Hardware to enable large-scale deployment and observation of soil microbial fuel cells

ENSsys 2022

jLab in Smart Sensing. *PI:* Colleen Josephson (cjosephson@ucsc.edu)

UC SANTA CRUZ

The impacts of climate change...

YAYAKAKAKANANANANANANANANANANA

SUMMER WATER SUPPLY IN 2019

SUMMER WATER SUPPLY IN SEVERE DROUGHT 2021

From drought.ca.gov and grist.org

Sensor networks: a tool against climate change

20-50% water savings via soil moisture sensors

[1] United States Environmental Protection Agency. 2013. WaterSense Notice of Intent (NOI) to Develop a Draft Specification for Soil Moisture-Based Control Technologies.

[2] Datta, S.; Taghvaeian, S.; Ochsner, T.E.; Moriasi, D.; Gowda, P.; Steiner, J.L. Performance Assessment of Five Different Soil Moisture Sensors under Irrigated Field Conditions in Oklahoma. Sensors 2018, 18, 3786

[3] Martin, E.C.; Pegelow, E.J.; Stedman, S. Comparison of Irrigation Scheduling Methods in Cotton Production; College of Agriculture, University of Arizona: Tucson, AZ, USA, 1995.

[4] D.K.; Hanks, J.E.; Pringle, H.L., III. Comparison of Irrigation Scheduling Methods in the Humid Mid-South. Irrigation Association. 2009.

[5] Sui, R. Irrigation Scheduling Using Soil Moisture Sensors. J. Agric. Sci. 2017, 10, 1

[6] Kebede, H.; Fisher, D.K.; Sui, R.; Reddy, K.N. Irrigation Methods and Scheduling in the Delta Region of Mississippi: Current Status and Strategies to Improve Irrigation Efficiency. Am. J. Plant Sci. 2014, 5, 50005. [[7] Zotarelli, L.; Scholberg, J.M.; Dukes, M.D.; Muñoz-Carpena, R.; Icerman, J. Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil Agric. Water Manag. 2009, 96, 23–34.

The two primary challenges of outdoor sensor networks are the lack of reliable **communication** and **power** infrastructure.

Could we harvest power from the ground itself?

Microbial fuel cells (MFCs)

- Naturally occuring exoelectrogenic microbes, produce spare electrons during their natural respiration process
- Microbes colonize an electron acceptor (anode) in the soil to form a biofilm
- Anaerobic anode + aerobic cathode + load = potential difference (fuel cell!)
- Well-known to civil and environmental engineers, but new to the EE and sensing communities
- Our work focuses on **soil-based** MFCs

Soil-based MFC. Microbes colonize the carbon anode to form a biofilm and donate electrons to cause a potential difference.

MFCs are hard to model

[1] *Early Characterization of Microbial Fuel Cells*, IEEE ISCAS '22. G. Marcano, C. Josephson, P. Pannuto [2] *The Future of Clean Computing May Be Dirty*. C. Josephson, W. Shuai, G. Marcano, P. Pannuto, J. Hester, and G. Wells. ACM GetMobile September 2022.. 26, 3 (2022).

Goal: gathering data on MFCs across the globe

- Wanted: an international network of MFCs deployed with soil sensors and power monitoring
- Data streamed to central data repo
- <u>Most expensive</u> part of deployments is the RocketLogger used to monitor power... \$1500+ USD per unit

Designing a soil power sensor board

- A variable resistor *Rsense* allows for adjusting the range/accuracy of current measurements
- We also used a MAX40204 current-sense amplifier, and an OPA820 high-speed OpAmp
- MAX40204 chosen because it can sense currents even when sense pins are both near 0 V
- OPA820 configured in 2x gain mode to buffer the voltage of the input
- \$53.71/unit for a parts, fabrication and assembly of a 50 unit run

Evaluations

Block diagram of the testing configuration for our board. A Keithley 2400 Source Measurement Unit (SMU) was used as a voltage source and to measure the voltage/current on the board. The SMU was configured for 2-wire sensing and connected to *Vin* and *GND* on the board

- Core question—will our lower-cost system still perform to our needs?
- Filtering: to filter out the noise from the soil power sensor, two passive low-pass filters w/ 4 kHz cutoff were placed between *Viout* and *Vout* outputs and Teensy analog input
- Analog to Digital Conversion: to accurately reproduce the original signal, need min resolution of 0.1 µA for current and 1 mV for the voltage. Full calculations in paper.
- Calibration: to account for component tolerances, the current/voltage channels were calibrated independently using linear regression with ADC I/V readings as inputs and sourced I/V as outputs in terms of µA/V

° main → soil-power-sensor-calibration / calibration.ipynb	Go to file
John Madden Added options for multivariate regression ✓	Latest commit e06757c 19 days ago 🛈 History
At 1 contributor	
815 lines (815 sloc) 135 KB	<> Raw Blame 🖉 🕶 🖸
Out[7]: Text(0, 0.5, 'Relative Measurement (V/V)') Voltage Channel Accuracy Raw	

```
In [8]:
fig, ax = plot_accuracy([
        (data["I_in"], data["I_meas"]),
])
```

Evaluations, cont'd

Key result: our board measures power with a minimum accuracy of 1.62% + 32.5828 pW in the ranges of 0 μ W to 722.4 μ W

Table 1: Summary of Soil Power Sensor board performance characteristics compared to the Rocketlogger and Shepherd.

		Soil Power Sensor		Rocketlogger	Shepherd
	Min	Avg	Max		
Voltage Range (V)	0	-	1.2	$\pm 5 V^{1+}$	10 µV to 3 V
Current Range	0	1	602 µA	$\pm 2 \mathrm{mA} \mathrm{(low current mode)^+}$	0 mA to 50 mA
Voltage Accuracy	0%	$0.18\% + 201.4 \mathrm{mV}$	0.61%	$0.26\% + 13 \mathrm{mV^6}$	$19.53 uV\pm 0.01\%$
Current Accuracy	0.11%	0.37% + 161.78 nA	1.01%	$2.19\% + 4 \mathrm{nA}^6$	$381nA \pm 0.07\%$
Sampling Rate (kSPS)	0	-	45	1 to 45 ⁺	100
Voltage Dynamic Range (dB)	-	-	75.5	-	-
Current Dynamic Range (dB)			71.4	172 +	-
Idle Power Consumption (W) ²	_	~ 0.415	-	~ 2.35	1.725
Logging Power Consumption (W) ³	-	~ 0.429	-	~ 2.35	
Cost per unit (USD)		\$53.71 ⁴	-	\$1500 ⁵	\$60.9

 $^1\,$ Taken from the max output voltage from $V_{2x},$ opamp voltage swing is the limiting factor.

² Taken while waiting for serial input

³ Taken while continuously sampling ADC via "cont" command

⁴ Parts, fabrication and assembly for a run of 50 units.

⁵ Commercially available for \$1500, but the design is open-source. The cost of parts to make DIY Rocketloggers (excluding fabrication and assembly) is ~\$350+ per unit at the time of this writing.

⁺ Value taken from datasheet

UC SANTA CRUZ

Next steps

- Soil Power Sensor Board v2.0:
 - v1.0 uses external Teensy 3.6 to calculate I/V due to high-availability and high-res
 ADC...in v2.0, revise to integrate a lower-power MCU, e.g. MSP450 series
 - Use a dedicated ADC to allow for bi-directional current/voltage sensing
 - Integrate low-power communications such as LoRa, NB-IoT or RF backscatter
- Improved calibration processes:
 - Account for fact that resistance of the current sensor may not be negligible
 - Use temperature and humidity sensors for more robust calibrations
- Long-term vision: a straightforward and inexpensive MFC kit we can send to anyone, and it can stream to our database, creating an international MFC dataset
 - Real-time monitoring and visualization of MFC data over the web

UC SANTA CRUZ

In closing

Authors:

John Madden UC Santa Cruz jtmadden@ucsc.edu Gabriel Marcano UC San Diego gmarcano@ucsd.edu Stephen Taylor UC Santa Cruz sgtaylor@ucsc.edu Pat Pannuto UC San Diego ppannuto@ucsd.edu Colleen Josephson UC Santa Cruz cjosephson@ucsc.edu

III: SANTA CRII7

Resources:

- C> Lab website: sensors.soe.ucsc.edu
- Project repo: github.com/jlab-sensing/soil-power-sensor-calibration

A slide with no footer

• Content