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From drought.ca.gov and grist.org

The impacts of climate change…



Sensor networks: a tool against climate change

20-50% water savings
via soil moisture sensors

…but <10% of US farms use them!
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The two primary challenges of outdoor 
sensor networks are the lack of reliable 

communication and power infrastructure. 



Could we harvest power from the ground itself?



Microbial fuel cells (MFCs)
● Naturally occuring exoelectrogenic microbes, 

produce spare electrons during their natural 
respiration process

● Microbes colonize an electron acceptor (anode) 
in the soil to form a biofilm

● Anaerobic anode + aerobic cathode + load = 
potential difference (fuel cell!)

● Well-known to civil and environmental engineers, 
but new to the EE and sensing communities

● Our work focuses on soil-based MFCs

Soil-based MFC. Microbes colonize the carbon 
anode  to form a biofilm and donate electrons to 

    cause a potential difference.



MFCs are hard to model
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Goal: gathering data on MFCs across the globe
● Wanted: an international network of 

MFCs deployed with soil sensors and 
power monitoring 

● Data streamed to central data repo
● Most expensive part of deployments is 

the RocketLogger used to monitor 
power… $1500+ USD per unit



Designing a soil power sensor board 
● A variable resistor 𝑅𝑠𝑒𝑛𝑠𝑒 allows for 

adjusting the range/accuracy of current 
measurements 

● We also used a MAX40204 
current-sense amplifier, and an OPA820 
high-speed OpAmp

● MAX40204 chosen because it can sense 
currents even when sense pins are both 
near 0 V 

● OPA820 configured in 2x gain mode to 
buffer the voltage of the input

● $53.71/unit for a parts, fabrication and 
assembly of a 50 unit run



Evaluations
● Core question–will our lower-cost system still 

perform to our needs?
● Filtering: to filter out the noise from the soil 

power sensor, two passive low-pass filters w/ 
4 kHz cutoff were placed between 𝑉𝑖𝑜𝑢𝑡 and 
𝑉𝑜𝑢𝑡 outputs and Teensy analog input 

● Analog to Digital Conversion: to accurately 
reproduce the original signal, need min 
resolution of 0.1 μA for current and 1 mV for 
the voltage. Full calculations in paper.

● Calibration: to account for component 
tolerances, the current/voltage channels 
were calibrated independently using linear 
regression with ADC I/V readings as inputs 
and sourced I/V as outputs in terms of μA/V

Block diagram of the testing configuration for our board. A Keithley 2400 
Source Measurement Unit (SMU) was used as a voltage source and to  
measure the voltage/current on the board.  The  SMU  was  configured
    for 2-wire sensing and connected to 𝑉𝑖𝑛 and 𝐺𝑁𝐷 on the board





Evaluations, cont’d

Key result: our board measures power with a 
minimum accuracy of 1.62% + 32.5828 pW in 

the ranges of 0 μW to 722.4 μW





Next steps
● Soil Power Sensor Board v2.0:

○ v1.0 uses external Teensy 3.6 to calculate I/V due to high-availability and high-res 
ADC…in v2.0, revise to integrate a lower-power MCU, e.g. MSP450 series

○ Use a dedicated ADC to allow for bi-directional current/voltage sensing
○ Integrate low-power communications such as LoRa, NB-IoT or RF backscatter

● Improved calibration processes:
○ Account for fact that resistance of the current sensor may not be negligible
○ Use temperature and humidity sensors for more robust calibrations

● Long-term vision: a straightforward and inexpensive MFC kit we can send to anyone, 
and it can stream to our database, creating an international MFC dataset
○ Real-time monitoring and visualization of MFC data over the web
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