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Abstract—In response to the global climate crisis, solar-
powered cellular base stations (BSs) are increasingly attractive
to mobile network operators as a green solution to reduce the
carbon footprint of networks. However, solar power presents
challenges due to its diurnal nature and significant variations
in harvestable power due to weather changes. To address these
challenges, solar deployments rely on batteries to provide power
during the night and periods of low sunlight. Batteries are ex-
pensive and have complex environmental considerations, making
it desirable to minimize their use at each BS and avoid over-
provisioning. Accurate prediction of energy income is essential
to minimize the number of Photovoltaic (PV) panels and batteries
required while maintaining the quality of service (QoS), achieve
a desired energy outage probability, for users.

This paper introduces an innovative approach to predict en-
ergy harvesting by utilizing a novel conditional Long Short-Term
Memory (Cond-LSTM) neural network architecture. Compared
with standard LSTM and Transformer models, the Cond-LSTM
model reduced the normalized root mean square error (nRMSE)
by 69.6% and 42.7%, respectively. The proposed approach
facilitates an accurate, cost-optimal PV-battery configuration that
meets outage probability requirements and aids in site design
for regions lacking historical solar energy data. Additionally, we
propose a solar-aware cellular communication scheme and user
power allocation to enhance QoS via signal-to-noise ratio (SNR)
optimization and minimize the probability of energy outages in
the cellular system.

Simulation results show the efficiency of our proposed solar
aware model in decreasing the overall outage probability of the
system and increasing the data throughput of the cellular system.
For the same battery configuration, our algorithm achieves 60
percent smaller outage probability and 8 billion bps greater data
throughput than a non solar aware approach.

Index Terms—Green communications, resource dimensioning,
solar energy, base stations, cellular networks

I. INTRODUCTION

T he number of mobile network subscribers has been
rising rapidly [1], resulting in an increased number of

base stations (BSs) and high network energy consumption
[2], [3]. The cost of energy is one of the largest operating
expenses for mobile network operators [4]. Furthermore, as
the Information and Communication Technology (ICT) sector
moves overwhelmingly towards significant emissions reduc-
tion, the carbon footprint of the energy used to power our
mobile networks is becoming a top concern [5]. Powering BSs
from locally-generated renewables, such as solar, is drawing
increasing interest [3]. In 2014, there were 43,000 BSs around
the globe fully or partially powered by onsite renewable
generation [6], and as of 2022, that number has grown to
more than 70,000 [7]. In addition to decreased energy costs
and a lower carbon footprint, locally-generated renewables
also improve efficiency by maximizing the amount of useful

energy expended. For example, today’s grid incurs 10-15%
transmission line losses [4], and losses worsen the further
towards the edge the consumer is located. Cell towers are often
on the far edge, so they suffer steep losses. By placing the solar
panels close to the consumer, energy losses are minimized.

Power management in wireless communications has always
been a challenging problem [8], [9]. Solar power is a very
popular renewable generation option [10]. Solar energy is
harvested during the day using photovoltaic (PV) panels,
and excess power is stored in batteries to support operations
at night or when the sun is occluded. The most important
design considerations for solar-powered BSs are the size and
number of PV panels, and the number of batteries. Over-
provisioning leads to unnecessarily high costs, so operators
typically want the smallest number of panels and batteries
necessary to provide the desired system performance. A key
performance indicator is the system energy outage probability.
Outages occur when a BS does not have enough energy to
operate reliably. Frequent system outages lead to poor quality
of service (QoS) and wasted resources.

Our work aims to introduce a comprehensive framework for
optimizing the design and operation of solar-powered cellular
base stations (BSs), addressing critical challenges related to
energy harvesting, resource allocation, and system reliability.

A. Overview of current state-of-the-art

In a mobile network User Equipment (UE) sends data
requests to a BS. The BS retrieves data and provides it to
the user in the form of data packets. These data packets are
framed into larger data frames and transmitted from the BS to
the UE. Allocating radio resources at the BS, i.e., power and
spectrum, to multiple users in a single data frame is known as
the scheduling and resource allocation (SRA) problem. SRA
has been well-studied from a variety of performance perspec-
tives: (1) spectral efficiency, (2) scalability, (3) computational
complexity, (4) QoS, (5) fairness, (6) transmission priority, etc.
[11]. Our work primarily considers QoS.

1) Markov-based methods: In the body of work that con-
sider solar base stations from the perspective of QoS, many
previous studies rely on Markov models [12]. Chamola and
Sikdar employed Markov processes to model the energy
harvested by PV panels and battery levels to evaluate the
outage probability of solar-powered BSs [13], [14]. Gorla
and Chamola [15] used Markov processes to estimate the
overall battery lifetime for a solar-powered cellular BS with a
specified PV panel wattage.

Additionally, other studies [16]–[18] have introduced
Markov chains as a common method for predicting solar
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radiation and energy harvesting. Markov models are relatively
simple to analyze and understand. However, they simplify
complex weather patterns into discrete categories, which limits
their accuracy. Some studies have attempted to enhance pre-
diction accuracy by applying higher-order Markov chains [19],
but this comes at the cost of increased system complexity.

2) Machine learning methods: More recent research uses
machine learning methods to predict solar irradiance [20]–
[23] and energy harvesting [24]. Long Short-Term Memory
(LSTM) models are widely used in machine learning for
predicting energy harvesting and have demonstrated notable
accuracy [25]–[27]. Ku et al. [28] utilized a Convolutional
Neural Networks (CNN)-LSTM model to predict energy states
in mobile edge computing systems. Han et al. [29] present a
prediction method based on LSTM for the stand-alone pho-
tovoltaic/wind/battery microgrid. Transformer models, which
are based solely on attention mechanisms, without using
convolutional or recurrent layers [30], have emerged since
2019 and demonstrated powerful capabilities across a wide
range of modern deep learning applications. Several papers
have published applications of Transformer models and hybrid
methods in solar energy forecasting, such as [31]–[34].

On the one hand, Transformers can handle long-range
dependencies more effectively than recurrent models such as
LSTM and can process sequences in parallel, leading to sig-
nificantly faster computation on GPU/TPU hardware for large
datasets [35]. On the other hand, Transformer networks have
higher computational complexity compared to LSTMs [36].
These characteristics make them more suitable for large-scale
tasks. For smaller or moderate-sized tasks—such as fore-
casting solar energy—Transformer models consume more re-
sources than an LSTM model with comparable accuracy [37].
Solar-powered systems are resource-constrained environments,
making the efficiency of LSTMs attractive. For these reasons,
we propose the use of an LSTM variant known as a conditional
LSTM, or Cond-LSTM, for solar energy harvesting forecast-
ing. Cond-LSTMs introduce an additional layer on top of the
traditional LSTM layer to enhance prediction performance.
This approach serves as a feature-prior model, in which
specific features are integrated to guide the network rather than
relying solely on raw input data. The conditional layer can be
different for different tasks. The benefits of this feature-prior
model are higher prediction accuracy and smaller model size.
Cond-LSTM networks been used in melody generation [38]
and spoken dialogue systems [39], but to the best of our
knowledge, our work is the first to explore Cond-LSTMs
for energy harvesting predictions. The detailed architecture
of the proposed Cond-LSTM used in our paper is described
in Chapter 2. In Section V-B we compare our model’s
performance against standard LSTMs and Transformers in
terms of accuracy and resource consumption.

3) Capacity Scheduling and Power Allocation : Capacity
scheduling for power allocation in a solar powered system
involves the dynamic management of the available battery
capacity to meet energy demands. This process includes pre-
dicting energy input from photovoltaic (PV) panels, monitor-
ing the battery’s state of charge, and efficiently, fairly, and
adaptively allocating energy based on solar energy generation

and consumption patterns. In addition, it prioritizes the distri-
bution of energy to critical functions when energy availability
is restricted [40], [41]. It is possible to use AI/ML methods
to facilitate capacity scheduling. For example, [42] uses
deep reinforcement learning (DRL) for capacity scheduling
in PV-battery systems, optimizing the storage and usage of
solar energy. Capacity scheduling focuses on managing energy
storage in PV-battery systems for arbitrary loads, and usually
assumes connectivity to the larger power grid, allowing users
to sell excess capacity to municipal energy providers. The
scope of this paper focuses on standalone solar powered base
stations, which are often too remote to be connected to the
power grid. However, in contexts where a BS is solar powered
but is also connected to the grid for backup power, capacity
scheduling can be considered a complementary technology to
the problem of mobile network power allocation.

Mobile network power allocation is the strategic distribution
and management of power resources across BSs and com-
munication channels within a network, with the key objec-
tives of ensuring ample signal quality for users, enhancing
system capacity, and curbing interference. Practical power
allocation involves assigning power to individual BSs and
communication channels to ensure each user receives sufficient
signal quality. This allocation improves end-user signal quality,
thereby elevating QoS and enabling higher data rates. In
the context of solar base stations, ensuring power allocation
consistency is essential for reliable service, preventing dropped
calls and maintaining network adaptability to fluctuating user
demands and weather conditions. Another important role of
power allocation is optimizing energy efficiency, which is
especially crucial for solar-powered BSs, as minimizing energy
usage within solar-powered network prevents power shortages
at the BS during inclement weather [43].

There is a rich body of work looking at power allocation
algorithms. [44] investigates communication within an uplink
cellular network and develops a spectrum and power allocation
strategy to maximize the total average achievable rate while
adhering to the constraints of a target outage probability. [45]
explore the role of machine learning in power allocation by
using a novel reinforcement learning (RL) algorithm combined
with a pointer network (PN) to optimizing spectrum efficiency
for device-to-device (D2D) communications in cellular net-
works. In fact, many works focus on D2D communications,
including [46]–[48].

Vallero et al. [49] propose a machine learning-based ap-
proach for optimizing energy usage in the Radio Access
Network (RAN) to reduce carbon emissions. Their focus is on
operational efficiency across a broad RAN, utilizing predictive
models to manage energy consumption. While Vallero et al.
emphasize energy optimization in a broader RAN context,
our work specifically addresses the energy management of
macro cellular base stations (BSs) powered by solar energy.
We introduce a Cond-LSTM model for solar energy harvesting
prediction, which achieves superior accuracy compared to
Markov, LSTM and Transformer models, as demonstrated in
our results. Additionally, we combine this predictive model
with a solar-aware resource allocation strategy, which is not
addressed in Vallero et al.’s study. Piovesan et al. [50] propose
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a machine learning approach for joint load balancing and
energy sharing among renewable-powered small BSs, focusing
on distributed energy management. While Piovesan et al.
concentrate on small-scale BSs and energy-sharing techniques,
our work is tailored for macro BSs, which have significantly
higher energy demands and operational complexities. Our
framework integrates solar energy prediction and resource
allocation, providing a holistic solution for PV-powered macro
BSs. Unlike their energy-sharing model, we optimize the
system for single BS scenarios with cost-optimal provisioning
of PV panels and batteries, maintaining 99.9 percent uptime.

The studies above are primarily focused on increasing the
QoS of cellular networks by efficient power and resource man-
agement and assume a reliable and relatively unconstrained
supply of power. To the best of our knowledge, there is no
work that optimizes resources considering the unique needs
of on-site renewable energy harvesting. We propose a model
for power allocation of solar-powered BSes that is informed
by predictions of how much power can be harvested. Our work
uniquely combines Cond-LSTM-based solar energy prediction
with a solar-aware power allocation strategy to optimize the
operation of macro BSs. While the referenced studies focus
on different scales (RAN-level, small BSs) or specific aspects
(storage management, load balancing), our study holistically
addresses the unique challenges of macro BSs powered by
renewable energy, achieving higher accuracy and operational
efficiency metrics.

B. Contributions of This Work
This paper introduces a comprehensive framework for op-

timizing the design and operation of solar-powered cellular
base stations (BSs), addressing critical challenges related to
energy harvesting, resource allocation, and system reliability.
The specific contributions of this work are as follows:

1) Accurate Solar Energy Prediction: We propose a
Conditional Long Short-Term Memory (Cond-LSTM)
model tailored for predicting solar energy harvesting.
The model significantly improves prediction accuracy
compared to Markov, LSTM and Transformer models.
As demonstrated in Section 5, our approach achieves a
normalized root mean square error (nRMSE) of 0.78%,
outperforming Markov (21.24%), LSTM (2.38%) and
Transformer (1.48%) models.

2) Optimization of Resource Allocation: A novel solar-
aware power allocation strategy is developed to max-
imize network performance by enhancing signal-to-
noise ratio (SNR) while minimizing energy outages.
Our results in Section 5 highlight a 60% reduction in
energy outage probability compared to non-solar-aware
strategies.

3) Enhanced Network Throughput: By leveraging solar-
aware optimization, the proposed model achieves an 8
billion bps improvement in network throughput com-
pared to non-solar-aware methods, as shown in Fig. 11.

4) Cost-Optimal Provisioning: Our framework determines
the minimum number of PV panels and batteries re-
quired to maintain 99.9% uptime while minimizing
costs. The optimization uses Mixed-Integer Linear Pro-

gramming (MILP) to balance energy demands and re-
source provisioning effectively.

5) Generalizability Across Regions: The Cond-LSTM
model demonstrates strong generalization across diverse
geographical regions, enabling accurate predictions even
for locations lacking historical solar energy data. This
capability ensures broader applicability of the proposed
framework.

These contributions collectively advance the state-of-the-art
in the design and operation of solar-powered cellular BSs,
enabling efficient energy management and enhanced quality
of service in green communication networks.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the system model and problem formulation.
Performance analysis for a single cell (one BS) scenario is
presented in Section 3. Section 4 focuses on energy outage
performance analysis for Non-Solar vs. Proposed Solar-Aware
models. Simulation setup and results are presented in Section
5. The paper is concluded in Section 6, and future directions
are discussed in this section.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

The proposed system model, as depicted in Fig. 1, focuses
on utilizing PV panel to power a BS in the context of a 5G
network. This system captures energy from sunlight using PV
panels, which, together with batteries, power the BS. Under
sunny conditions, the PV panels generate enough energy to not
only directly power the BS but also store any excess energy
in the batteries. Conversely, during nighttime or cloudy days
when the PV panels cannot produce sufficient energy, the
stored energy in the batteries is used to maintain the BS’s
operations. The system comprises several components: PV
panels for energy harvesting, a battery bank for energy storage,
an energy management unit to manage energy storage and
consumption, and a cellular BS to support energy consumers
or loads. Fig. 1 presents the high-level architecture of a solar-
powered BS. This system harnesses energy from sunlight
through PV panels, which, in conjunction with batteries,
powers the BS.

Energy 
Management 
Unit 

Energy
Production 

Energy
Storage 

Energy
Use

Energy
Consumption 

Solar-Powered Base Station 
Batteries

Photovoltaic (PV)
Panel

Energy 
Management 
Unit 
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Fig. 1. Architecture of the Solar-Powered BS System.

To ensure continuous operation, the system employs a
mechanism to balance energy supply and demand. If the
energy harvested by the PV panel is insufficient to meet
the consumption requirements, energy can be extracted from
the batteries. Conversely, if the harvested energy exceeds the
consumption needs, the excess energy is stored in the batteries
for the later use.

In the system modeling process, BS load, harvested solar
energy by the PV panel, and battery levels are all modeled.
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TABLE I
HYPERPARAMETERS APPLIED FOR COND-LSTM AND LSTM.

Hyperparameter LSTM Cond-LSTM
Activation Dense Dense

Input All the Features Feature “DHI” and other features
Loss MSE MSE

Optimizer Adam Adam

Furthermore, the energy outage at the BS is modeled as an
event occurring when the charge level of the BS batteries falls
below a discharge threshold. In such a scenario, the batteries
are disconnected from the BS and there is an outage event.
B. Structure of an off-the-grid BS

Sub-parts of a modern BS are as follows:
• Power Amplifier (PA): Amplifies the signal to be trans-

mitted, boosting its strength for effective communication.
• Cooling System: Preventing overheating and ensuring

optimal performance.
• Edge Compute: Provides computing capabilities at the

edge of the network, enabling real-time processing of data
and reducing latency.

• Antenna System: Transmits and receives radio frequency
signals, facilitating communication with user devices.

• Baseband Processor: Handles signal processing tasks,
including modulation, demodulation, and error correction.

• Digital-to-Analog Converter (DAC): Converts digital
signals into analog signals for transmission through the
antenna.

• Analog-to-Digital Converter (ADC): Converts incom-
ing analog signals, received by the antenna, into digital
signals for further processing.

• Solar Panels: Harness solar energy to generate electrical
power for the BS, contributing to sustainability.

• Batteries/Power Management System: Stores excess
energy generated by renewable sources (e.g., solar panels)
and manages power distribution to ensure continuous
operation, even during periods of low energy generation.

C. Energy Harvesting Models

Fig. 2. The Markov Chain of the Solar Power Harvesting Model correspond-
ing to transition matrix defined in [14].

Energy harvesting models play an important role in our
solar-aware system, as they enable both one-time provisioning
of infrastructure such as solar panels and batteries, as well
repeatedly predict solar energy income for the power allocation
scheme (see Sec. III). Due to frequent inferences in the power
allocation algorithm, the model must be resource efficient.

Our energy harvesting model assumes the scenario where a
single macro base station is powered by its own dedicated
battery bank. This is because our work focuses on macro
base stations, which are assumed to have relatively wide
geographic separations, making it impractical to share a battery

bank among multiple base stations. Macro BS have high
transmission power (about 40W for devices with bandwidth
of 20MHz), while micro BS have lower transmission power
(typically a few hundreds milliwatts to a few watts) [51].
Traditional LSTM models exhibit satisfactory performance in
predicting harvesting energy for micro systems but encounter
limitations with macro systems. Transformer models achieve
slightly higher accuracy than LSTM [52] but need more
calculation resource consumption. Motivated by the challenge
of enhancing solar energy prediction accuracy for macro base
stations, we introduce the Cond-LSTM model to significantly
improve prediction accuracy while having a smaller model
size. Specifically, we construct a conditional neural network
tailored to solar activity patterns. This is crucial because, for
high-capacity PV panels, data during sunlight hours display
significant variability compared to other times. Segregating
predictions for non-sunlight hours into a separate neural net-
work diminishes data variability and improves data smooth-
ness, thereby facilitating more accurate forecasting. The inputs
we are using include time information (Month, Hour), Direct
Normal Irradiance (DNI), Diffuse Horizontal Irradiance (DHI),
Global Horizontal Irradiance (GHI), Dew Point, Temperature,
Pressure, Humidity, Wind Direction, Wind Speed, and Surface
Albedo. Differing from a traditional LSTM, our model instead
divides the inputs into two parts. Inputs with selected feature
DHI are fed into a self-defined lambda layer, while other
features are fed into the LSTM model. DNI, DHI, and GHI
are three key features most closely related to solar activity.
While DNI is strongly influenced by the angle of sunlight
and approaches zero during sunrise and sunset, we consider
DHI, which is more associated with diffuse radiation, as the
input for the lambda layer. GHI, encompassing both DNI
and DHI, could also be used for the lambda layer, but we
allocate it to the LSTM layer to aid in prediction. The output
of lambda layer will decide if we will accept the outputs
from LSTM layer. The proposed Cond-LSTM is shown as
Fig. 3. Table I displays the hyperparameters of LSTM and
Cond-LSTM, with the majority kept consistent to ensure a fair
comparison, except for a few essential modifications necessi-
tated by the model construction. Both models are single-layer
LSTM/Cond-LSTM architectures containing one dense layer.

We utilize 21 years of statistical weather data provided
by the National Renewable Energy Laboratory (NREL) [53],
comprising hourly solar irradiance data for specific locations.
The weather data is then processed through PySAM of the
System Advisor Model (SAM) Software Development Kit
[54] to generate the hourly energy output of a PV panel
with a specified rating. This serves as the ground truths
for our evaluations. Although we evaluated only four typical
locations in different climate zones across the United States,
the generalization evaluation in this paper demonstrates that
the proposed model, with stable and high accuracy, effectively
learns the relationship between weather and solar harvesting.
This model can be generalized to other climate zones without
retraining and still achieve high prediction accuracy when local
weather data is provided.

In addition to AI/ML-based modeling, we also compare
our results against a three-state first-order Markov process
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described by [14]. Similarly to [14], the weather is categorized
into three states: ”bad weather (S1)”, ”not good weather (S2)”,
and ”good weather (S3)”. For each month, daily harvesting
patterns were calculated by the mean harvesting value of that
month in 20 years. Then the thresholds of each day types was
determined by the different solar harvesting/irradiance level
(reflected as the different percentage in the boxplot, we defined
them as “≤ 50%”, “50%−75%” and “ ≥ 75%” in this paper).
Next, we marked those days for different day types according
to the thresholds. The transition probability was calculated
by 20 year’s statistical data of daily solar harvesting. And a
transition matrix showing the probabilistic relationship of sub-
patterns created accordingly. Different transition matrices are
calculated for different months. Fig. 2 illustrates the Markov
chain of the harvesting model.

In the Markov model, 20 years of data were used to
compute the transition matrices for different months, with an
additional year of data dedicated to verifying accuracy. For
the LSTM, Transformer and Cond-LSTM models, the dataset
is divided into training data (18 years), validation data (2
years), and testing data (1 year). The Cond-LSTM model
introduces a conditional neural network architecture designed
to process the DHI feature in conjunction with other inputs,
effectively distinguishing between non-sunlight hours (with
zero harvesting) and sunlight hours. It incorporates LSTM and
Dense layers for predictive tasks. Cond-LSTM is applied to the
RobustScaler normalization to enhance neural network perfor-
mance, while we found that LSTMs and Transformers perform
better with MinMaxScaler. Furthermore, the training process
of all LSTM, Transformer and Cond-LSTM is optimized
through the utilization of EarlyStopping, ModelCheckpoint,
ReduceLROnPlateau, and a bespoke LearningRateScheduler,
all contributing to improved training efficiency and model
accuracy. Fig. 4 illustrates the process flow for predicting
energy harvested by PV panels using the Cond-LSTM model.

D. Traffic Model

To highlight the practical relevance of our model, we
have based our power consumption framework on recent 5G
data. Our traffic model utilizes generative normalized traffic
data [55], trained on empirical data, and this data has been

adjusted to match 5G power consumption figures reported by
Huawei [56]. According to Huawei, the power requirements
for the Remote Radio Unit (RRU) and Baseband Unit (BBU)
at each site exceed 11.5 kilowatts. In our model, we assume a
peak power consumption of 11.5 kilowatts for a 5G BS, with
approximately 47 percent of this power allocated to the cooling
system [57]. The remaining power consumption is calculated
using the formula [58]:

Pbs =
(NS ×NTx)(

PTx

ηPA
+ PBB

ηBB
+ PRF

ηRF
)

(1− (c4 + ϵ4n))(1− (c5 + ϵ5n))(1− (c6 + ϵ6n))
(1)

where the PTx, PBB , and PRF are the ideal power consump-
tion for the power amplifier, baseband unit, and transceiver, re-
spectively. They were taken as PTx = 500W , PBB = 100W ,
and PRF = 100W . The efficiency η of these parameters
depends on the number of connections n (load), as follows:
ηPA = c1 − ϵ1n, ηBB = c2 − ϵ2n and ηRF = c3 − ϵ3n
respectively, where ϵi (i = 1, 2, 3) is a coefficient for efficiency
that varies with load n for power amplifier, baseband unit
and transceiver devices respectively, and ci (i = 1, 2, 3)
represents the corresponding part of the efficiency that is
not load-dependent. σR = c4 + ϵ4n, σDC = c5 + ϵ5n and
σCOOL = c6 + ϵ6n are the loss factors due to rectification,
regulation, and cooling, respectively. All the efficiency and
loss factors above are between 0 and 1. The parameter ϵi is
contingent upon the hardware design and specifications of the
device and is considered negligible unless the load approaches
the magnitude of 105–106. Peak load is around 14000, so
variation of efficiencies with the load is very weak, with all
the ϵi were taken as 10−7. The efficiencies were taken as
c1 = 0.75, c2 = c3 = 0.8, c4 = 0.65, c5 = 0.15, which we
take the same parameters as the article [58]. c6 is set to be 0.47
according to [57]. Each base station typically has 3 hexagonal
sub-sectors (thus NS = 3) and we assume every antenna is
deployed for 10,000 devices as in [58]. So the number of
antennas for each sub-sector is NTx = n

104 . The auxiliary
power is neglected because of its independence of the load.

E. Sizing the PV Panels and Battery

PV Panel: Numerous common PV panel sizes are available.
In our model, we select a configuration of 72 cells which
measures approximately 1meter × 2meters 1.

Battery Bank: Lithium-ion batteries are particularly suitable
for photovoltaic standalone systems due to their reliability,
modularity, and durability.

Optimal Sizing: Determining the optimal number of PV
panels and batteries is essential for the construction of a
solar-powered BS. It requires consideration of not only the
tolerable outage probability but also the need to minimize
costs. To determine the optimal sizing, we assess the residual
energy from the previous hour in the batteries, EBattery(i−1),
plus the energy harvested in the current hour, Eharvest(i),
comparing this sum to the current hour’s energy consumption,
Econsume(i), where i denotes the hour in question. We assume

1For both PV panels and batteries, the prices are drawn from the options
available in an online retailer as of Mar 19th, 2024. For cost comparisons, we
use Mission Solar 430W monocrystalline MIN-MSE430SX9Z ($244) and the
Generac PWRcell 3.0kW Lithium-Ion Battery Module G0080040 ($2093).
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that that all Lithium-Ion batteries are fully charged prior to the
BS’s operation, with each battery’s capacity, CB , being 3.0
kWh. To prevent battery damage due to excessive discharge,
we simply set the minimum state-of-charge (SoC) as 20%,
which means a lower limit is established at 20% of a bat-
tery’s capacity [59]. Consequently, the BS operates normally
if m · EBattery(i − 1) + n · Eharvest(i) − Econsume(i) >
20% ·m ·CB , where m is the number of batteries and n is the
number of PV panel modules. Conversely, an outage occurs
if m · EBattery(i − 1) + n · Eharvest(i) − Econsume(i) <
20% · m · CB . In the sizing model, it is assumed that a
maximum of one hour of outage is permissible over a span
of approximately a month (671 hours), which corresponds to
99.9% uptime. Given this threshold for outage tolerance, the
goal is to ascertain the necessary quantities of PV panel and
battery modules to minimize overall costs. In this analysis,
installation and maintenance expenses are not considered. The
constrained optimization problem is described below:

Objective Function:
Minimize cost = n · PV_cost+m · Battery_cost (2)

Subject to: Initial Battery Level:
EBattery(0) = m · CB (3)

Available Energy:
Eavail(i) = EBattery trim(i−1)+n ·Eharvest(i)−Econsume(i) (4)

Outage Constraints:
Eavail(i) ≥ 0.2 ·m · CB + ε−M · outage indice(i) (5)

Eavail(i) ≤ 0.2 ·m ·CB + ε+M · (1− outage indice(i)) (6)

Battery Energy Update:
EBattery(i) = Eavail(i) + Econsume(i) · outage indice(i) (7)

Trimmed Battery Constraints:
EBattery trim(i) ≤ min (EBattery(i),m · CB) (8)

Battery Capacity Constraints:
EBattery(i) ≤ m · CB (9)

EBattery(i) ≥ 0 (10)

Total Outage Constraint:
len data∑
i=1

outage indice(i) ≤ 1 (11)

A Mixed-Integer Linear Programming (MILP) approach
with big-M method is used to solve this problem, where M is
a sufficiently large constant to force a constraint to be either
active or inactive. Taking the Iowa (IA) region as an example,
for 99.9% uptime, harvesting projections are calculated via
Cond-LSTM, whose output is used in the MILP to solve the
optimal solutions for the number of solar panels and batteries.

A Mixed-Integer Linear Programming (MILP) approach
with big-M method is used to solve this problem, where M is
a sufficiently large constant to force a constraint to be either
active or inactive. outage indice(i) = {0, 1}, where 1 means
an outage happen and 0 means no outage happen. Taking
the Iowa (IA) region as an example, for 99.9% uptime, the
optimal solutions for solar panels and storage batteries are
calculated via Cond-LSTM are 47 and 22 respectively. Fig. 5
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Fig. 5. Outage of an example BS with energy consumption, PV panels
harvesting energy and batteries storage energy across 48 hours. Batteries
storage energy are shown as zero when the 80% of the batteries drained,
due to the 20% lower limit.

presents the data on energy consumption versus energy avail-
ability extracted from a 48-hour period surrounding an outage
occurring under this configuration. As the day progresses, the
battery bank is fully charged to a capacity of 66 kWh, which
corresponds to 52.8 kWh of usable capacity due to the system
policy of never draining the batteries below 20%.

III. RESOURCE ALLOCATION ANALYSIS

For a BS providing service to users at location x, the data
rate c(x) is derived from the Shannon-Hartley theorem and
expressed as [60]:

c(x) = BW · log2(1 + SNR(x)) (12)
with BW being the total bandwidth of BS and SNR(x), the

signal-to-noise ratio, is calculated as

SNR(x) =
g(x)P (x)

σ2
(13)

where g(x) signifies the channel gain from BS to the user
at x, accounting for shadowing and path loss, P (x) is BS
transmission power, σ2 is the noise power which its unit would
be in watts (W) since P (x) is in watts and g(x) is dimension-
less. This paper assumes that precise channel state information
(CSI) is available, which can be estimated from the terrain
topology and site surveys. While the assumption of having
precise channel gain information from terrain topology and
site surveys is useful for theoretical and simulation purposes,
its real-world application can be limited by environmental
complexity, technological capabilities, and dynamic changes.
It’s more realistic in controlled or less complex environments
and serves as a good starting point for initial network design
and simulation studies. In practice, ongoing adaptation and
updates to channel gain information are necessary for optimal
network performance.

For simplicity, we use the average SNR of each channel
from a BS to a user during 24 hours to compute the BS’s
offered data rate at x. We define the load ρ for BS as the
proportion of time it is occupied with serving requests.
A. Objective User Power Allocation Optimization Problem

Our goal is to optimize the utilization of sustainable energy
sources accessible to the BS with the intention of enhancing
the SNR for each communication within the network. Concur-
rently, it is imperative to prevent any lapses in energy supply
at the BS. Therefore, we present an optimization problem that
aims to elevate the cumulative SNR throughout the network
over the course of the day, contingent on the solar energy
harnessed by the BS. This problem is structured as follows:
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Maximize
24∑
i=1

∫
R

SNR(x) dx

subject to
24∑
i=1

Li ≤ E

0 ≤ ρi ≤ 1 for all i,

(14)

where Li indicates the power usage of the BS during hour
i, and E signifies the allocation of green energy for the BS
throughout the day.

In this work, Li includes both the power allocated for user
transmissions and the operational power required for the BS’s
core functionality, such as cooling and control systems. The
total BS power consumption is influenced by the transmission
power allocation, as well as the efficiency of the power
amplifiers and other supporting hardware. The optimization
framework ensures that the relationship between transmission
power and total BS power consumption is accounted for,
while adhering to the green energy constraints. This approach
guarantees that the BS operates within its available energy
budget, optimizing the cumulative SNR across the network
while preventing any interruptions in energy supply. The
traffic demand is assumed to be evenly distributed among
the users, with stochastic variations accounted for over time.
The optimization is based on the prediction of solar energy
availability and the expected traffic demand throughout the
day. The BS operational power is considered constant, while
user transmission power depends on the traffic demand and
channel conditions. We should mention that, the power allo-
cated to each user is closely tied to the BS’s total transmission
power, which is distributed based on user needs and channel
conditions. Factors like connection quality, user distance, and
network traffic influence this allocation. Users with weaker
signals or farther from the BS require more power, while others
need less. The allocation process optimizes transmission power
to enhance network performance while adhering to energy con-
straints, especially in solar-powered systems, ensuring reliable
communication without energy overuse or outages.

Determining whether an optimization problem is convex
involves examining the objective function and the constraints
to see if they meet the criteria of convexity.

For the sake of illustration, we choose 5 users. This spe-
cific number allows us to demonstrate the key concepts and
evaluate the performance of the proposed system without
overcomplicating the analysis. By selecting 5 users, we can
effectively showcase the dynamics of power allocation and
system performance under realistic, yet manageable, condi-
tions. Additionally, this choice aligns with common scenarios
in wireless communication research, where a moderate number
of users is used to balance computational feasibility and
practical relevance. While the number of users could vary in
real-world deployments, the insights gained from this analysis
remain applicable and scalable to larger systems.

In the simulation section, the optimization problem is aimed
at determining the optimal power allocation to each of the
5 users over a 24-hour period, with decisions made every
second. The outcome of the optimization provides the power

values assigned to each user at each interval, ensuring that
the cumulative SNR across the network is maximized while
satisfying the energy budget constraints.

B. Optimization Problem Solving Approach

Problem Formulation: Our objective is to maximize the cu-
mulative Signal-to-Noise Ratio (SNR) over a specified period
within a cellular network. This involves optimizing the power
allocation to multiple users across several time intervals while
adhering to specific constraints. The cumulative SNR is com-
puted using the Shannon-Hartley theorem, which captures the
logarithmic relationship between channel capacity and SNR.
The optimization aims to achieve a balance between maximiz-
ing network throughput and maintaining feasible power usage.

The decision variables in this problem are the power al-
locations (P ) to each user in each interval. The constraints
ensure that power allocations remain within the available
energy budget and do not exceed the maximum allowable
transmission power for each user. The objective function
explicitly incorporates these elements, as described in Eq. 14.

Parameters and Variables: The key parameters and vari-
ables include the number of users (numUsers) in the network
and the number of intervals (numIntervals) considered during
the optimization period. For instance, if the optimization
period spans 24 hours, setting numIntervals to 17280 implies
that power allocation decisions are made every 5 seconds,
resulting in a total of 17280 intervals.

Additional parameters include:

• Stochastic channel gains for each user (g), representing
the quality of the communication channel.

• Noise power σ2, which impacts achievable SNR.
• Total available bandwidth (BW).
• Maximum allowable power for transmission (P max).
• Total energy budget for power allocation across the

optimization period (Energy Budget).
Objective Function: The objective function maximizes the

total SNR across all users and intervals. For each user in a
given interval, the SNR is defined as a function of the allocated
power (P ), channel gain (g), and noise power (σ2):

Maximize
∑

all intervals

∑
all users

log2

(
1 +

g × P

σ2

)
(15)

This formulation aligns with the practical goal of enhancing
network throughput while ensuring efficient resource utiliza-
tion. The logarithmic term captures the diminishing returns of
increasing power allocation due to the noise-limited nature of
wireless channels.

Optimization Approach: To solve this optimization problem,
we use MATLAB’s nonlinear programming solver, fmincon.
The solver is provided with:

1) Objective Function: The negated version of the above
function to facilitate minimization, as fmincon is a
minimization solver.

2) Constraints:
• Linear Constraints: Bounds on power allocations

to ensure 0 ≤ P ≤ P max.

This article has been accepted for publication in IEEE Transactions on Green Communications and Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2025.3554470

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 21,2025 at 03:51:07 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING 8

• Nonlinear Constraints: The energy budget con-
straint, which ensures that the total energy con-
sumed across all intervals does not exceed the
available budget (Energy Budget).

The optimization process iteratively adjusts the power allo-
cations, evaluating the objective function and checking the
constraints at each step. The solution provides an optimal set
of power allocations that maximizes the cumulative SNR while
satisfying all constraints.

This approach ensures that the practical requirements de-
scribed in Section 3.2 align with the mathematical formulation
in Eq. 14. The effectiveness of this method in reducing system
outages and improving cellular communication throughput is
demonstrated in the simulation results section.

IV. ENERGY OUTAGE PERFORMANCE ANALYSIS FOR
NON-SOLAR VS. PROPOSED SOLAR-AWARE MODELS

In the optimization problem and simulations discussed so
far, we are allocating power to individual users in a cellular
communication network. The allocated power serves to en-
hance the SNR, which is essential for delivering high-quality
communication services. It also plays a key role in minimizing
the noise throughout the network, ensuring efficient and reli-
able performance. The optimization problem aims to distribute
power resources strategically across users and BSs to achieve
these objectives.

In the context of cellular communication networks, allocat-
ing power to a user refers to distributing the available power
resources among the transmission chains associated with in-
dividual users. The power allocation is typically performed at
the transmitter chain of the BSs or access points. It involves
determining how much power each user’s transmission chain
should use during a given interval. The goal is to achieve
efficient utilization of the available power budget, considering
factors such as channel conditions, interference, and noise. Our
energy outage algorithm considers energy dynamics through-
out the day and operates on a per-second basis.
A. Energy Outage Decision Algorithm Model:

TABLE II
VARIABLE DEFINITIONS

Variable Description
Eharvested(t) Energy harvested by the solar panel at

time t.
Econsumed day(t) Energy consumed by the BS during the

day at time t.
Eexcess day(t) Excess energy stored in the battery dur-

ing the day at time t (Eharvested(t) −
Econsumed day(t)).

Ethreshold-min Minimum battery level threshold for
nighttime operation.

Ethreshold-max Maximum battery level threshold.
Econsumed night(t) Energy consumed by the BS during the

night at time t.
Eavailable(t) Energy available in the battery at time

t.
Eoutage(t) Energy outage indicator at time t.

Energy Outage Decision Algorithms in non-solar prediction
model during day and night time are implemented in Fig. 6
and Fig. 7. Variable definitions are in Table II. The decisions
of how to allocate power will depend on whether or not the
system is actively harvesting or subsisting on battery (i.e.
daytime vs. nighttime). During the night, we must budget

power consumption such that the battery does not completely
drain. If the battery drains below some threshold, then we are
unable to service users, and this is considered an outage.

During the day, we need to build up battery reserves for
nighttime operations, as well as serving the daytime user de-
mands. During nominal operations, there is enough incoming
energy to satisfy all the user demand and also charge the
battery at some minimum rate needed to meet the a target
threshold before sunset. However, if the charge rate will not
allow the threshold to be met, then the system must instead
temporarily reduce power consumption (e.g, reduce overall
transmit power). In the most dire case, the transmit power
is as low as possible, but the battery is still not charging.
There are two possible choices here: i) begin to drain the
battery to satisfy users now, at the expense of night users,
ii) incur a daytime service outage to preserve the quality of
nighttime service. The best choice will depend on the typical
traffic patterns the BS experiences, but for simplicity, we will
prioritize daytime users at the cost of night service under
these circumstances. During extreme weather (e.g. almost no
sunlight all day) it may be possible for the battery to drain
fully during the day causing a daytime outage.

1) 24-Hour Operation Loop in Non-Solar Aware Pre-
diction Model:: During the daytime, the algorithm focuses
on managing the BS’s operation based solely on the energy
currently stored in the batteries and energy demands at the
current time, t. For a given time t, the solar income is first
used to supply the BS’s current power draw. Any excess energy
after servicing the BS needs is stored into the battery.

If this excess energy is positive, indicating an energy
surplus, it is stored in the battery for later use. In cases where
the excess energy is negative, indicating an energy deficit,
the algorithm takes precautionary measures to avoid further
depletion of the battery. It sets the excess energy to zero
to prevent negative values and then checks if the remaining
energy in the battery, coupled with predicted incoming energy,
is sufficient to sustain BS operations. If so, the BS continues
operating; otherwise, an outage state is triggered to prevent
system failure due to insufficient energy supply.

During the nighttime, when solar energy harvesting is not
available, the algorithm manages the BS’s operation based
solely on the energy stored in the battery. It ensures that the
BS operates within the constraints of the available energy to
prevent system instability or failure. The algorithm first checks
if the available energy in the battery is sufficient to meet the
energy consumption demands of the BS during the night. If
so, the BS operates normally. In cases where the available
energy is insufficient, either due to high energy demand or low
battery levels, the algorithm triggers an outage state to prevent
system overload and ensure the integrity of critical functions.
Additionally, if the available energy falls below a predefined
threshold, indicating a critical battery level, an outage state is
also initiated to prevent further depletion of the battery and
preserve system functionality.

2) 24-Hour Operation Loop in Proposed Solar Prediction
Model:: During the daytime, the algorithm manages the oper-
ation of the BS in response to varying levels of harvested solar
energy and battery state. It follows a series of steps to ensure

This article has been accepted for publication in IEEE Transactions on Green Communications and Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2025.3554470

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 21,2025 at 03:51:07 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING 9

Algorithm 1 Daytime Operation (Non-Solar-Aware)
Input: Eharvested(t), Econsumed day(t), Eavailable(t), Ethreshold-max
Output: Eexcess day(t), Battery status, Eoutage(t)
Calculate Eexcess day(t) = Eharvested(t)− Econsumed day(t).
if Eexcess day(t) ≥ 0 then

Store excess energy in the battery.
else

Set Eexcess day(t) = 0 (to avoid negative excess energy).
if Eavailable(t)− Ethreshold-max ≥ Econsumed day(t) then

Operate normally.
else

Set Eoutage(t) = 1.
end if

end if

Algorithm 2 Nighttime Operation (Non-Solar-Aware)
Input: Eavailable(t), Econsumed night(t), Ethreshold-min
Output: Eoutage(t)
if Eavailable(t) ≥ Econsumed night(t) then

Operate the BS during the night.
else

if Eavailable(t) < Econsumed night(t) or Eavailable(t) <
Ethreshold-min then

Set Eoutage(t) = 1.
end if

end if

Algorithm 3 Daytime Operation (Solar-Aware)
Input: Eharvested(t), Eharvested(t + 1), . . . , Eharvested(t + x),
Eavailable(t− 1), EBSmin, Eth max
Output: Eavailable(t), Eoutage(t)
if Eharvested(t), . . . , Eharvested(t+ x) > EBSmin then

Calculate Eexcess(t) = Eharvested(t)− Econsumed(t)
Update Eavailable(t) = Eexcess(t) + Eavailable(t− 1)

else if Eharvested(t + n) < EBSmin and
|Eavailable(t+ n− 1)− Eth max| > |Eharvested(t+ n)− EBSmin|
then

Set Econsumed(t+ n) = EBSmin
Update Eavailable(t + n) = Eavailable(t + n − 1) −

|Eharvested(t+ n)− EBSmin|
else if Eharvested(t) + . . . + Eharvested(t + n − 1) > n · EBSmin
then

Set Econsumed(t), . . . , Econsumed(t+ n) = EBSmin
else

Set Eoutage(t) = 1
end if

Algorithm 4 Nighttime Operation (Solar-Aware)
Input: Econsumed(t

′), Eavailable(t
′ − 1), ETHmin

Output: Eavailable(t
′), Eoutage(t

′)
if Econsumed(t

′)− Eavailable(t
′ − 1) ≤ ETHmin then

Update Eavailable(t
′) = Eavailable(t

′ − 1)− Econsumed(t
′)

else
Set Eoutage(t

′) = 1
end if

Start

Init vars at t

Eexcess = Eharv − Econs

Eexcess ≥ 0

Store excess

Eexcess = 0

Eavail − Eth ≥ Econs

Operate

Eoutage = 1

yes
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Fig. 6. Energy Outage Decision Algorithm in non-solar prediction model
(Daytime Operation, business-as-usual)

Start

Eavail(t) ≥ Econs night(t)

Operate

Eoutage(t) = 1

yes

no

Fig. 7. Energy Outage Decision Algorithm in non-solar prediction model
(Nighttime Operation, business-as-usual)

efficient energy utilization and system stability. The algorithm
begins by assessing whether the cumulative harvested solar
energy over a specified time window meets the minimum
energy threshold required for BS operation. If so, any ex-
cess energy beyond the consumption needs is stored in the
battery for later use. In cases where the cumulative harvested
energy is insufficient to meet the minimum requirement, the
algorithm intelligently adjusts the energy consumption based
on the available energy and predictions of incoming energy.
It aims to sustain essential operations by optimizing energy
utilization while ensuring the battery’s minimum threshold is
not compromised. If neither of the above conditions is met,
indicating a prolonged energy deficit, the algorithm activates
a fallback mechanism. This mechanism ensures that the BS
operates at the minimum required energy level for a predefined
period, maintaining critical services while mitigating the risk
of system failure. In scenarios where none of the conditions are
satisfied, indicating an extended energy shortfall, the algorithm
triggers an outage state. This state serves as a safety measure
to prevent critical system failure and allows for necessary
interventions or alternative power sources to be activated.

During the nighttime, when solar energy harvesting is
not available, the algorithm manages the BS’s operation by
assessing the available energy in the battery from the previous
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TABLE III
COND-LSTM VS. TRADITIONAL LSTM, TRANSFORMER AND MARKOV

FOR A 48.94KW RATING PV PANEL.

Methods nRMSE (H)↓
(%)

RMSE (H)↓
(W)

RMSE (D)↓
(W)

MAE (D)↓
(W)

ME (D)↓
(W)

MPE (D)↓
(%)

Markov 21.238 8588.413 120815.054 94364.946 -10471.987 52.811
LSTM 2.377 1043.646 9308.663 6990.764 2763.534 1.932

Transformer 1.480 648.136 12365.747 11448.602 -11087.669 -8.342
Cond-LSTM 0.776 343.856 2795.262 2231.747 -108.615 -0.410

time step. It ensures that the BS only operates within the
constraints of available energy to prevent system instability or
failure during periods of limited energy supply. If the energy
consumed exceeds the available energy, indicating an energy
deficit, the algorithm triggers an outage state to maintain
system stability and prevent overload.

V. SIMULATION SETUP AND EVALUATIONS
A. Evaluation 1: Energy Harvesting Forecasting Methods

In this section, we evaluate the energy harvesting predictions
made by a Cond-LSTM, vs. LSTM, Transformer and Markov
models. Table III assesses the models’ accuracy for a 48.94
kW panel through RMSE for hourly and daily predictions,
as well as Mean Absolute Error (MAE), Mean Error (ME),
and Mean Percentage Error (MPE) for daily energy harvesting
predictions. The results quantify the error metrics in watts,
where ‘H’ denotes hourly predictions and ‘D’ indicates daily
estimates. An downward arrow signifies that lower values
reflect superior predictive performance. The results reveal that
the Cond-LSTM model significantly outperforms the other
approaches. We used the same dataset for all models evaluated
in this paper to ensure fairness. Variations in PV panel sizes
and data lengths can significantly impact most error metrics.
Normalized RMSE2 (nRMSE) is provided for comparing with
results from other papers, as this metric is not significantly
affected by PV panel size or data length. Prior works found
that LSTMs achieve 3.6% nRMSE with 600 epochs [61]. In
comparison, our Cond-LSTM model achieves 0.78% nRMSE
with a maximum of 500 epochs.

We also evaluated the LSTM and Cond-LSTM models
using a time-series split to separate training and testing data
across several partitions, which allows us to validate the model
predictability across different scenarios. Data were partitioned
four ways, with the training and test distributions set as 4
years/4 years, 8 years/4 years, 12 years/4 years, and 16 years/4
years. We applied the time-series split separately for data from
four regions, assessing both RMSE and nRMSE for each. Fig.
8, depicting the time-series split for cross-validation across
different regions, indicates that the Cond-LSTM outperforms
the LSTM across all four datasets in all four regions.
B. Evaluation 2: Applicability to Different Regions

To assess how Cond-LSTM performance changes depending
on local weather patterns, we selected several areas character-
ized by their distinct climatic features and trained a model
for each location. We chose Rapid City in South Dakota (SD)
(renowned for its unpredictable weather patterns [62]) to test
the model’s performance in a variable climate environment.
Another two regions selected were: California (CA), represent-
ing the western United States, and Virginia (VA), reflecting
the eastern United States. Similarly, for each location, 20

2nRMSE is defined as nRMSE = RMSE/(Amax −Amin), where A
represents actual data
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Fig. 9. nRMSE of Markov, LSTM, Transformer and Cond-LSTM

years of historical data are used for model development
and 1 year of data for evaluation. Results show that the
RMSE of the Cond-LSTM prediction for different regions
still remain low even for a large size PV panel (48.94kW
DC rating). The RMSE of South Dakota was the highest,
at 405.973W . The RMSEs of all other locations are actually
better (4.39%−18.45% improvement). The results shows that
for all those regions, Cond-LSTM have a stabler and much
more accurate prediction than Markov, LSTM and Transformer
method. Fig. 9 presents the nRMSE (normalized by range)
for the Markov, LSTM, Transformer and Cond-LSTM mod-
els across four distinct locations. LSTM, Transformer and
Cond-LSTM models exhibit stability across varying weather
conditions, in contrast to the Markov model, which exhibits
instability across different datasets. Notably, the Cond-LSTM
achieves the highest prediction accuracy, with an nRMSE =
0.776%, 0.861%, 0.882%, 0.802% for Iowa, California, South
Dakota and Virginia respectively. In addition, we investigate
the model sizes of the three machine learning models, as
shown in Table IV. Although the Transformer model achieves
comparable accuracy, it has a significantly larger model size
in terms of parameters, overall model size, and floating point
operations per second (FLOPs). The proposed Cond-LSTM
outperforms in both accuracy and resource efficiency, enabling
more reliable and efficient repeated energy predictions for the
resource allocation process.

C. Evaluation 3: Generalizability
In this section, we evaluate how well a model trained for

one location can perform at a new location without re-training.
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TABLE IV
RESOURCE CONSUMPTION OF DIFFERENT MODELS

Methods Parameter size↓ Model size↓ FLOPs ↓
LSTM 5793 22.63 KB 135936

Transformer 118081 461.25 KB 4889088
Cond-LSTM 5665 22.13 KB 398592

TABLE V
OPTIMAL SIZING AND COST OF A GENERAL MODEL APPLIED TO SOUTH

DAKOTA, CALIFORNIA AND VIRGINIA REGIONS
Harvesting

Data
Number of

PV Panel Modules
Number of

Battery Modules Cost Difference ↓

Location South Dakota
Ground Truth 57 21 0 ($57881.31)

LSTM 58 23 7.655%
Transformer 58 22 4.039%
Cond-LSTM 57 21 0%

Location California
Ground Truth 50 22 0 ($58265.14)

LSTM 51 21 3.174%
Transformer 55 22 2.096%
Cond-LSTM 51 22 0.419%

Location Virginia
Ground Truth 86 35 0 ($94270.87)

LSTM 86 32 6.662%
Transformer 87 36 2.480%
Cond-LSTM 86 35 0%

We trained a general model by using 2000 - 2019 data from
the Iowa region, and then used the pre-trained model to predict
the 2020 year harvesting data for locations in California, South
Dakota and Virginia. The ability to use a pre-trained model
helps avoid the financial and environmental costs of re-training
a model for every new location.

The nRMSE (normalized by range) of the general model’s
prediction for those regions are 2.624%, 2.010%, 1.162%,
respectively. Compared to the Cond-LSTM models trained
specifically for a region, a non-conditional LSTM trained on
local data has a 0.999% − 1.406% nRMSE difference, while
Markov based on the same data has an 9.895% − 19.466%
nRMSE difference. The general Cond-LSTM model, however,
only shows 0.360% − 1.763% nRMSE difference, which is
similar to the accuracy of LSTMs specifically trained on the
local data. These results extend beyond the specific case of
a model trained on Iowa being evaluated in other locations.
If the model is trained solely on data from CA, SD or VA,
and then evaluated in new locations, the results are similar:
the ‘general’ model only has an 2.9% increase in nRMSE, on
average. This shows that a Cond-LSTM model trained in one
place can predict the harvesting energy of other locations with
high accuracy.

Table V presents the PV/battery numbers and associated
costs obtained using a model that makes predictions in
new locations. Additionally, we compare the performance of
Cond-LSTM, Transformer (generalized), and LSTM (general-
ized) models, demonstrating that the Cond-LSTM predictions
closely match the ground truth. This indicates that a model
trained with data from one location can still accurately predict
the size of a solar-powered system in another. Furthermore,
when provisioning for new locations—particularly those with
insufficient historical weather data for effective training or no
solar harvesting data—short-term weather data can be used
effectively by leveraging a well-trained model from regions
with abundant historical weather and harvesting data.

D. Evaluation 4: Sizing the Solar System and Cost
The results in Table VI indicate that the Markov models ex-

hibit significant errors in estimating the size of solar-powered
systems. Although the LSTM model and Transformer yields

TABLE VI
OPTIMAL SOLAR SIZING/COST PER DIFFERENT PREDICTION MODELS

Harvesting
Data

Number of
PV Panel Modules

Number of
Battery Modules Cost Difference ↓

Ground Truth 48 22 0 ($57776.70)
Markov 69 19 1.993%
LSTM 50 22 0.845%

Transformer 49 23 4.046%
Cond-LSTM 47 22 0.423%

good results, the Cond-LSTM model outperforms both. How-
ever, this marginal discrepancy between the LSTM, Trans-
former and Cond-LSTM models can be attributed to the low
DC rating (0.43 kW) used for a single PV panel module.
The benefits of our algorithm become more pronounced when
using larger PV panels or custom-designed integrated panels.
As the size of each panel grows, over or under provisioning by
a single panel can cause the error to amplify in size due to the
increased power per PV panel. This will lead to considerable
increases in RMSE for the non Cond-LSTM approaches, as
demonstrated in Table III.
E. Evaluation 5: User Power Allocation

The solution of objective optmization function in formula
(6) provides the power allocated to each user in each in-
terval. These allocations represent the optimized strategy for
maximizing the network’s cumulative SNR under the given
constraints. The results are then analyzed to assess network
performance and adherence to energy limitations. To evaluate
the effectiveness of our proposed power allocation strategy in a
cellular network, we conducted a simulation using MATLAB.
The objective was to maximize the cumulative SNR over a
one-hour period, with power allocation decisions made every
60 seconds. This resulted in a total of 60 intervals. The
simulation parameters were set as follows:

• Number of users (numUsers): 5
• Number of intervals (numIntervals): 60 (correspond-

ing to 1 hour with decisions every 60 seconds)
• Channel gain parameters: Mean (mu_g) = 1, Standard

deviation (sigma_g) = 0.2
• Idle power per interval (P0): 10 Watts
• Constant energy budget per interval

(constantEnergyBudgetPerInterval): 100
• Normalized noise power (sigma2): 1
• Bandwidth (BW): 20 MHz
• Maximum allowable power (P_max): 20 Watts

The choice of Pmax in our simulation or optimization problem
is context-dependent. While the provided article mentions a
4-port MIMO and dual-band radio delivering 4x40 W of
radiofrequency power, the consumption of 1060 W encom-
passes the entire radio unit, including signal processing and
other operational aspects. More explanation added below. The
choice of Pmax in our simulation or optimization problem is
context-dependent. In our scenario, Pmax is determined based
on hardware constraints, regulatory limits, and the desired
trade-off between power consumption and performance. For
instance, a Pmax of 20 Watts may be realistic for a small-scale
BS with limited power capabilities.

Stochastic channel gains were generated for each user and
each interval, based on the specified mean and standard devi-
ation. MATLAB’s fmincon function was used to solve the
nonlinear optimization problem. The objective function was
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designed to maximize the cumulative SNR, and the constraints
ensured that power allocations did not exceed the available
energy budget and adhered to the maximum power limits. The
optimization process yielded power allocations for each user
at every interval over the one-hour period. To visualize these
results, a time-series plot was generated, showing the power
allocated to each user over time. The time-series plot in Fig. 10
provides a detailed view of how the power allocation strategy
varied across different intervals for each user. It revealed
patterns in power distribution and highlighted periods where
certain users were allocated more power, possibly due to better
channel conditions or lower interference.

Simulation results demonstrate the effectiveness of our op-
timization approach in dynamically allocating power to maxi-
mize SNR. The time-series plot, in particular, offers valuable
insights into the allocation strategy, indicating how the network
adapts to varying conditions and user demands over time. This
approach not only enhances network performance but also
ensures efficient utilization of energy resources.

F. Evaluation 6: Comparison of Outage in Non-Solar Aware
and Proposed Solar Aware Scenarios

In this section, we compare the outage percentages between
the non-solar aware and proposed solar prediction scenarios
which can be seen in Fig. 11.

We conducted simulations using both the non-solar aware
and solar aware algorithms and analyzed the outage percent-
ages during the daytime and nighttime operations.

Fig. 10. Time-series plot of the power allocated to each user in the cell

Fig. 11. Comparison of Outage in Non-Solar Aware and Proposed Solar
Aware Prediction Scenarios

We model a solar energy harvesting system, comprising a
PV panel with DC rating 1 KW. We assume that 12 V, 205 Ah
flooded lead acid batteries are used. The simulation spans from
July 27th, 2024, to August 20th, 2024, encompassing 25 days

Fig. 12. Comparison of data throughput in Non-Solar Aware and Proposed
Solar Aware Prediction Scenarios

of operation. Energy management algorithms are evaluated
under two scenarios: the Non Prediction Algorithm, which
reacts solely to real-time energy availability and demand,
and the proposed Solar Prediction Algorithm, which utilizes
a predictive LSTM model to anticipate future solar energy
availability. Outage detection thresholds are set at 100 kWh for
high-demand situations and 20 kWh for low battery conditions.
Key performance metric, energy outage percentage, provides
insights into the system’s operational efficacy. Simulations
are conducted using MATLAB R2024a, leveraging realistic
solar energy data and algorithmic implementations to evaluate
system performance comprehensively.
G. Evaluation 7: Comparison of Throughput in Non-
Prediction and Proposed Prediction Scenarios

Throughput refers to the amount of data transferred success-
fully over a network within a given period. The range for data
throughput can vary significantly depending on the specific
context and application of the BS like network technology,
channel conditions (including factors such as signal strength,
interference and noise), bandwidth allocation, number of users,
QoS Requirements, equipment and configuration.

Throughput can be calculated using following formula:

Throughput =
Bandwidth × MCS × N spatial streams

Number of bits per byte
× N symbols per subframe
× N subframes per millisecond (16)

Channel bandwidth is expressed in hertz (Hz). MCS (Mod-
ulation and Coding Scheme) determines the number of bits
transmitted per symbol and the error correction capability of
the modulation scheme. Number of spatial streams represents
the number of independent data streams transmitted simul-
taneously using multiple antennas (MIMO - Multiple Input
Multiple Output). Number of symbols per subframe refers
to the number of modulation symbols transmitted in each
subframe. Number of subframes per millisecond indicates the
frequency of subframe transmissions within one millisecond.
Number of bits per byte represents the number of bits in a
byte (usually 8 bits).

Comparison of data throughput in Non-Solar Aware and
Proposed Solar Aware Prediction Scenarios can be seen in
Fig. 12 which proves the effectiveness of proposed model in
increasing the throughput of the system. As it can be seen from
the figure, for the same battery configuration, our algorithm
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achieves 8 billion bps greater data throughput than a non-solar
aware approach.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel system model for
integrating photovoltaic (PV) technology to power BSs in a
5G network, ensuring continuous operation through efficient
energy management.

We introduced an accurate forecasting approach, the Cond-
LSTM, designed to optimize the deployment of solar-powered
macro BS. Our model demonstrated versatility across various
geographic regions, highlighting its broad applicability. Our
comparative analysis showed that the Cond-LSTM model
outperformed Markov, LSTM and Transformer models in key
error metrics such as RMSE, MAE, ME, and MPE.

Our optimization approach for power allocation within the
cellular network further demonstrated the system’s ability
to maximize SNR while adhering to energy constraints. By
incorporating real-time traffic data and utilizing advanced op-
timization techniques, we ensured efficient energy utilization,
minimized outages, and enhanced overall network perfor-
mance.

By simulating scenarios that closely mirror the energy
consumption patterns of macro 5G BSs and a given tolerable
power outage rate, we determined the number of PV panel
modules and battery modules required for a solar-powered
5G base BS. The results showed that our model closely
aligned with ground-truth data, enabling precise determination
of the required quantities of PV panels and storage batteries.
Additionally, we demonstrated that our model, once trained
on data from a single region, could effectively forecast solar-
powered system outputs and inform sizing decisions in various
other regions.

Future work will focus on extending the model to encom-
pass more complex scenarios, such as varying environmental
conditions and dynamic user demands, and exploring the
integration of additional renewable energy sources to further
enhance the reliability and efficiency of solar-powered BSs.
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