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ABSTRACT
Soil microbial fuel cells (SMFCs) are an emerging technology which
offer clean and renewable energy in environments where more tra-
ditional power sources, such as chemical batteries or solar, are not
suitable. With further development, SMFCs show great promise for
use in robust and affordable outdoor sensor networks, particularly
for farmers. One of the greatest challenges in the development of
this technology is understanding and predicting the fluctuations
of SMFC energy generation, as the electro-generative process is
not yet fully understood. Very little work currently exists attempt-
ing to model and predict the relationship between soil conditions
and SMFC energy generation, and we are the first to use machine
learning to do so. In this paper, we train Long Short Term Memory
(LSTM) models to predict the future energy generation of SMFCs
across timescales ranging from 3 minutes to 1 hour, with results
ranging from 2.33% to 5.71% MAPE for median voltage prediction.
For each timescale, we use quantile regression to obtain point esti-
mates and to establish bounds on the uncertainty of these estimates.
When comparing the median predicted vs. actual values for the
total energy generated during the testing period, the magnitude of
prediction errors ranged from 2.29% to 16.05%. To demonstrate the
real-world utility of this research, we also simulate how the models
could be used in an automated environment where SMFC-powered
devices shut down and activate intermittently to preserve charge,
with promising initial results. Our deep learning-based prediction
and simulation framework would allow a fully automated SMFC-
powered device to achieve a median 100+% increase in successful
operations, compared to a naive model that schedules operations
based on the average voltage generated in the past.
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Figure 1: Overview and Vision. This work aims to create
a predictive model for scheduling the activation of SMFC
powered devices, allowing them to activate intermittently
and then shut down to conserve energy.

1 INTRODUCTION
Climate change is already affecting every aspect of our society,
widening existing socioeconomic disparities across the world. Some
of the most dangerous changes are occurring in our global food
systems, where extreme weather has made feeding our growing
population a challenge. Data-driven agriculture techniques, such as
moisture and nutrient monitoring, have enabled us to grow more
food while using fewer resources [29]. Unfortunately, the adoption
rates for the sensor networks that enable data-driven agriculture
remain low [18]. Part of the reason for this is that deploying and
maintaining sensor networks is currently costly and labor intensive,
as farms and other managed lands typically lack robust power and
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communication infrastructure. One promising area of investiga-
tion involves harvesting power for sensor networks from the soil
itself [12]. Soil microbial fuel cells (SMFCs) are a compact, low-cost
bioelectrochemical system that harvest power from exoelectrogenic
microbes that occur naturally in the soil.

Though SMFCs only produce microwatts of power, electron-
ics have progressed such that this is actually enough to power
the latest generation of ultra-low power devices [5, 11, 27]. SM-
FCs are a renewable source of energy, and unlike more traditional
power sources (chemical battery, solar, etc.), they are typically con-
structed using environmentally inert materials with a very low
carbon footprint. Once fully developed, they could power outdoor
sensor networks, giving farmers access to high-resolution, real-
time data on their fields towards making educated decisions on
farm management. They also have the potential to be biosensors
in and of themselves [17]. For example, the electricity generated
by the microbial communities can be used as a signal to indicate
heavy-metal contamination or dissolved oxygen in water [1, 23].

A key challenge with leveraging this unique source of biopower
is that the electro-generative process is not yet fully understood,
with rises and drops in energy production being common due to a
variety of complex factors, including temperature, soil type, mois-
ture and more. This makes SMFCs difficult to use as a source of
consistent and reliable power. To address this barrier, we have cre-
ated a deep learning model to predict SMFC energy generation over
time, increasing their viability as an energy source for low-power
applications. To our knowledge this is the first work to predict
SMFC energy generation using deep learning.

In addition to making point estimates of future energy output,
our work models the uncertainty of these estimates using quantile
regression, as defined in Section 3.3.1. This allows us to make con-
servative estimates of future energy generation when necessary,
in order to minimize the possibility of a device not having enough
energy to perform the operations our model predicts it will. It is
often necessary for low-power applications, such as outdoor sen-
sor networks, to shut down for periods of time to gather energy,
activating only when necessary to perform operations [15]. This is
known as intermittent computing [13]. Our approach is key for the
types of intermittently active, low-power applications supported
by SMFCs, where every microwatt makes a difference, and trying
to activate a device before enough energy is stored would waste
precious energy. Our model, which has been trained and evaluated
on months of real SMFC data, predicts performance for future time
horizons using recently observed data. These predictions make
it possible to schedule device operations ahead of time, allowing
for more effective resource allocation. For example, it would be
possible to adjust the duty cycle of wireless data transmission—an
operation with high power consumption—based on the predicted
power budget. In times of low energy availability, for example, the
number of attempted wireless data transmissions could be reduced
to conserve energy for more essential operations (e.g. timekeeping,
local data logging).

There are multiple advantage of predictive models over a naive
approach that uses a fixed duty cycle. The first advantage is that
overall system downtime can be reduced. When no prediction in-
formation is available, the only option to maximize longevity is

reducing the frequency of operation to as low as acceptably possi-
ble. With a predictive model, the system can to take advantage of
times of high energy availability to perform more frequent and/or
sophisticated operations (e.g. over-the-air firmware updates). The
second advantage is that we can avoid wasting energy. Intermit-
tent computing applications should only activate only when there
is enough energy available to perform the desired operations, e.g.
transmitting a packet. If the operation is not successfully completed,
then no useful progress is made, and the stored energy is wasted
and unavailable to use in a future potentially-successful operation.
Our model addresses this need by allowing for a lower-bound pre-
diction of energy generation using quantile regression, as defined
in Section 3.3.1. Likewise, we introduce three unique metrics in
this paper to evaluate the usefulness of our model for intermittent
computing applications. This is in addition to the more standard
Mean Average Percent Error (MAPE), which is used to measure
the overall accuracy of the model’s predictions compared to the
ground truth values. The domain-specific metrics in this paper in-
clude the Failed Prediction and Overestimation rates, designed to
measure how often the model predicts greater energy generation
than the true value, and the Missed Activation rate, designed to
predict how many more times a device could have been activated
by using a theoretical"perfect model” capable of predicting exact
energy generation. These metrics are defined in further detail in
Section 3.4.

2 BACKGROUND
2.1 Microbial Fuel Cells
Most generally, microbial fuel cells (MFCs) are electrochemical cells
that generate electricity from the transfer of electrons resulting
from microbial interactions. Soil microbial fuel cells (SMFCs) use
the microbial interactions within soil, but other types of MFCs can
use wastewater or sediment as well [12]. Two key requirements
for SMFCs to operate are anaerobic conditions and a sufficient
presence of soil organic matter. Certain types of microbes, known
as exoelectrogens, produce a spare electron as part of their natural
respiration process. By placing an anode within the soil connected
to a cathode outside the soil, the anode can receive these electrons
from the soil microorganisms and allowing them to flow to the
cathode, generating electricity. This process is described visually
in Figure 2, adapted from Josephson et al. [12].

2.2 Quantile Regression in Energy Forecasting
Compared to other types of models, deep learning can be used to
make extremely accurate predictions in various application areas.
However, the non-statistical nature of deep learning makes model
interpretation difficult. Quantile regression is one way to address
this weakness by allowing deep learningmodels to obtain prediction
intervals as well as point estimates. Previous works have used
machine learning and deep learning with quantile regression to
forecast renewable energy generation [24][25]. However, our work
is the first to use this technique to predict the energy output of
SMFCs. Forecasting energy output for SMFCs is more difficult than
for more traditional sources (e.g. wind, solar) for several reasons.
SMFC energy generation is directly tied to microbial conditions,
which are governed by complex biological processes that are not yet
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Figure 2: Visual diagram of soil microbial fuel cell electro-
generative process.

fully understood. For example, it can take microbial communities
longer to respond to changes in environmental conditions than solar
or wind systems, resulting in delayed and unpredictable changes
to energy generation [12].

2.3 SMFC Modeling for Incubation Phase
Before being deployed in the field, SMFCs usually undergo an in-
cubation phase within an indoor environment. Dziegielowski et
al. [4] created a physics-based mathematical model to predict the
voltage of SMFCs during their incubation phase based on initial soil
conditions. However, this work only predicts voltage (not current).

Averaging across all three soil types used in the model, 82.7%
of predictions had a relative error (defined as the absolute error
divided by the experimental value) of less than 10%, and 71.7%
of predictions had a relative error of less than 5% [4]. However,
there are several key differences between the physics-based model
developed byDziegielowski et al. and the one presented in our paper,
which makes direct comparison of the models difficult. The physics-
based model was validated on the same data used for training,
while the data for our model is split into training, validation, and
testing sets, used to fit the model, tune hyper-parameters, and
evaluate performance, respectively. Furthermore, the physics-based
model directly simulates the biophysical conditions of an SMFC
over the course of several months in order to predict the output,
starting from the initial conditions of the soil. In contrast, our model
accounts for the rapidly-changing conditions of a non-laboratory
deployment by periodically reading in sensor data to update the soil
conditions, and uses this to predict SMFC at various time horizons
into the future.

Overall, [4] offers strong insight into soil conditions that promote
high voltage output for SMFCs during incubation, but does not
attempt to model these relationships in an out-of-lab deployment
setting. At the time of this writing, our work is the first to (1) model
and predict SMFC performance during field deployment outside
of the lab, (2) predict current as well as voltage, and (3) predict for
multiple time horizons with bounds on the uncertainty.

2.4 Intermittently Active, SMFC-Powered
Devices

Marcano et al. [15] successfully developed a low-power, e-ink dis-
play device powered exclusively by an SMFC, demonstrating the
potential of this technology as a renewable energy source. This
device was designed to be active intermittently: it is turned off
while charging, and manually powered on once enough energy had
been stored for activation. However, the evaluation was limited to
laboratory settings where unrealistically high moisture levels were
necessary to sustain the device.

Yen et al. [27] created a proof-of-concept system that successfully
powers an RF backscatter tag. They also developed a framework
for calculating the number of operations various SMFC-powered
devices can perform based on measured SMFC voltage traces, ac-
counting for the complex harvesting process required to use SMFC-
generated energy.

Our work focuses on modeling and predicting MFC energy out-
put. This allows us to develop a framework for scheduling inter-
mittent computing device operations in advance, so devices can
activate only when they have enough energy to do so, thereby
conserving energy. This would enhance the functionality of the
prototypes discussed in [27] and [15], the latter of which required
a human participant to monitor energy availability and manually
activate the device.

2.5 Task Scheduling Frameworks for
Intermittently Powered Systems

This paper is the first work, to our knowledge, to present a deep
learning based approach to predicting SMFC power output, and
scheduling useful tasks and operations based on these predictions.
However, other works have created task scheduling frameworks
for intermittently powered systems not fueled by SMFCs. Zygarde
is one such framework, which has been validated on four standard
datasets—three consisting of labeled images for training machine
learningmodels, and one containing audio files—and deployed in six
real-world application settings, with RF and solar-powered systems
[10]. The applications used for validation are performed on audio
and visual tasks, so we are unable to compare their performance to
our regression-based model.

Furthermore, Zygarde does not directly predict energy genera-
tion, but rather uses a uses a probabilistic method to model energy
randomness. In contrast, our work uses deep neural networks for
regression to directly predict voltage, current and power output, as
well as the upper and lower bounds for these values.

3 METHODOLOGY AND DESIGN
3.1 Dataset Description
The dataset used to train the models in this paper is taken from a cell
that began operation in 2019 and was retired in 2022. Specifically,
we use the segment of the data during which the cell was deployed
in a field setting, which lasted from June 4th, 2021 to January 6th,
2022.

We use the first 70% of the data for our training set, the subse-
quent 15% of the data for our validation set, and the last 15% of
the data for our test set. Our input values consist of the average
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values of various features over a desired time interval, as described
in Section 3.2. Therefore, the size of our sets vary in size from 2559
to 51400 values for the training set and 548 to 11015 values for
the validation and testing set, with larger values corresponding to
shorter time intervals.

3.2 Data Pre-Processing and Model Features
Our models aim to forecast the power generation of an SMFC over
five different timescales—3 minutes, 5 minutes, 15 minutes, 30 min-
utes, and 60 minutes in the future. These timescales were selected
to explore how the accuracy of our model changes over different
prediction horizons. We begin by sanitizing our data (removing
occasional erroneous zero measurements due to data outages), and
then resampling it by taking the average of each feature across
the timescale for which the current model is being trained. For
example, if we want to train a model that predicts the average
SMFC power generation over the next hour, we resample our data
to obtain the one-hour average for each of the model’s features. The
features we use to train the model are the power, current and volt-
age of the SMFC, and the electrical conductivity, temperature, and
raw volumetric water content of the soil. The power, current and
voltage values are gathered using the open-source RocketLogger
system [20], and the electrical conductivity, temperature, and raw
volumetric water content values are gathered using the commer-
cial TEROS-12 sensor [16]. These values are sampled every 12-15
seconds.

Next we shift the data such that at each timestamp, the model
is given access to the features of the previous three time intervals
in order to predict the average power, voltage and current for the
current time interval. Finally, we add the number of days since
SMFC deployment, as well as the hour of the day, to our list of
features. The input features are not normalized.

3.3 Model Building
This work uses a Long Short-Term Memory (LSTM) model to pre-
dict future energy generation for LSTMs. LSTMs are one of the
most-used deep learning models for time series data, data which is
indexed and processed in temporal order. Many past studies have
used LSTMs to predict solar and wind energy generation [28] [21],
and we apply this approach to SMFC energy forecasting for the
first time.

Our model uses the Adam optimizer at the default learning rate,
and a sequence length of four for the input data. We change our
batch size depending on the desired timescale of the prediction,
with a batch size of 300 for 3 minutes, 150 for 5 minutes, 50 for 15
minutes, 20 for 30 minutes, and 8 for 60 minutes. More information
on the structure of our model can be found in the open-source
Github repository for this project [8],

3.3.1 Quantile Regression. While deep learning models excel in
making accurate predictions, it is difficult to calculate the uncer-
tainty in the predictions of these models, limiting their usefulness
in real-world settings [7]. One method to establish bounds on uncer-
tainty in deep learning models is quantile regression, which allows
us to train multiple models, which each explicitly predict a different
quantile of the data. For example, if we wish to predict the energy
generation at a given time and establish bounds on uncertainty

with a 90% confidence interval, we would train three separate mod-
els using quantile regression: one model to obtain point estimates
by predicting the median quantile, one model to obtain the lower
bound of the prediction interval by predicting the 5th quantile, and
another model to obtain the upper bound of the prediction interval
by predicting the 95th quantile [24]. To train these models, we use
the following loss function, also known as the "pinball loss" during
training:

if predicted ≤ actual:

loss = 𝛼 ∗ (actual - predicted)

else:

loss = (1 − 𝛼) ∗ (predicted - actual)

where 𝛼 is the desired quantile, predicted is the predicted current,
voltage, and power output for the SMFC, and actual is the actual
current, voltage, and power output for the SMFC.

Since performing gradient descent requires a differentiable loss
function, quantile regression cannot typically be used with deep
learning. However, the pinball loss function allows us to overcome
this limitation and use quantile regression to quantify the uncer-
tainty of our models [19, 22]. Several other works have also used
quantile regression with pinball loss to quantify uncertainty for
deep learning-based energy forecasting models [24, 25].

It should be noted that the data does not follow a normal distri-
bution, so the quantiles of our upper and lower bounds will not be
equidistant from the median. Furthermore, as the model produces
three outputs with different distributions (current, voltage, and
power), the outputs are expected to diverge somewhat from the
desired quantile, since the model training optimizes the average
loss metric of the three.

3.4 Model Evaluation
We use our test set, as described in Section 3.1, to evaluate our
model. There are several techniques that we can use to interpret
the prediction and the accuracy of our models:

3.4.1 MAPE. Model accuracy for regression tasks can be calculated
using Mean Average Percent Error (MAPE), defined as follows:

1
𝑛

𝑛∑︁ |actual − predicted|
|actual| × 100

Intuitively, this value is the average percent difference between
the predicted values and the actual values in a model. There is no
universally agreed upon acceptable value for MAPE, but a MAPE of
0% would indicate that the model predicts the data with zero error,
whereas an MAPE of 50% indicates that on average, the predicted
value is off by 50% of the actual value.

3.4.2 Total Energy % Error. This metric is the percent difference
between the actual and predicted values of the total energy gen-
erated. Energy is the integral of power over time. The difference
between predicted energy income and actual energy income is a
more valuable metric than MAPE because the actual magnitude of
over-predicting and under-predicting power does not actually mat-
ter if the over- and under-predictions compensate for each other.
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The results for the Total Energy % Error metric are recorded in Ta-
ble 1, with negative values indicating underestimation and positive
values indicating overestimation.

3.4.3 Failed Activation Rate. The failed activation rate metric mea-
sures how often our model schedules a device activation when there
is not enough energy available, resulting in the device failing to
activate and the stored energy being wasted. The failed activation
rate will be calculated as follows:

failed_active

active_pred

failed_active is the total number of times our model schedules
a device activation when there is not enough energy available,
resulting in the device failing to activate. active_pred is the total
number of activations scheduled by our model.

3.4.4 Missed Activation Rate. Unlike overestimation and failed
activations, the missed activation rate metric measures how many
more times the device could have successfully been activated, if
we had access to a theoretical "oracle" model that could perfectly
predict and make use of the available energy. It will be calculated
as follows:

missed_active

max_active

missed_active is the number of additional times the device
could been have activated if the model had perfectly predicted how
much energy would be available. It is calculated as the theoretical
maximum possible number of operations, minus the number of
successful operations scheduled by our model. max_active is the
theoretical maximum possible number of operations.

3.5 Comparison Models
In addition to the rest of the metrics described in this section, we
evaluate our scheduling framework by comparing it to two different
models: the naive model and the oracle model.

The naive model, also referred to as the naive fixed-duty cycle,
is used as a "baseline" model to compare our deep learning-based
model to. It operates in the same way as the runtime simulation
code described in section 3.6, by using predictions of SMFC voltage
to estimate how much usable energy the SMFC will have access to
in the future, and then using these estimates to schedule activation
of a device. However, while our runtime simulation predicts the
voltage using deep learning models, the naive model simply takes
the average voltage over the past 𝑥 days before the start of the test
set, with 𝑥 being the size of the test set.

In contrast, the oracle model is designed to measure the maxi-
mum possible number of times we could activate a device using the
energy generated during the duration of the test set. This allows us
to compare our scheduling framework against a theoretical, per-
fect maximum. To obtain this maximum number of activations, we
simply measure the energy generated in the test set, and divide by
the energy required to activate our device.

3.6 Runtime Simulation
Yen et al. [27] have developed a framework for calculating the
number of operations various SMFC-powered devices can perform
based onmeasured SMFC voltage traces, accounting for the complex

harvesting process required to use SMFC-generated energy. Our
work adapts this simulation to use the voltage predictions from
our LSTM models, using publicly available python code created
by Yen et al. [27] [26]. To evaluate our model’s performance, we
investigate how many times an SMFC could be used to activate the
Cinamin beacon, a low-power device designed exclusively to send
BLE advertisement packets [2]. On average, this device requires 3.9
𝜇𝐽 to activate [26]. We also make the following modifications to
the code presented by Yen et al.:

The original simulation code uses an estimate of SMFC internal
resistance calculated using the one-resistance method used in Fuji-
naga et al. [6]. We are unable to use this method for the cell which
gathered the data used in this paper,since the deployment ended in
2022 and we no longer have access to the cell. However, the cell we
used to gather our data is very similar to the v0 cell used in [27], so
we use the same internal resistance of 6926Ω for our calculations.

Furthermore, in the absence of a better estimator, a flat harvester
efficiency of 60% is used for calculations, based on the lowest effi-
ciency found in the ADP5091/ADP5092 energy harvester datasheet
for V_in = 0.5V, V_SYS = 3V, and a lower range of input voltages of
0.01V. [3].

3.7 Time-Series Cross Validation
In time-series analysis, one cannot train a model on data gath-
ered after data from the validation or testing sets. Because of this,
traditional k-folds cross validation, a method for testing the gen-
eralizability of a deep learning model, cannot be used. However, a
modified version of k-folds called time-series cross validation can
be used to test how well a time-series model generalizes to new
data [9]. Using this method, we train and test the performance of
our deep learning model with 4 different distributions of training,
validation, and test datasets. The first of these uses the first 20% of
the data to train the model, the next 10% to generate the average
voltage used in the naive model, as described in section 3.5, and the
next 10% as the test set to evaluate model performance. The second
dataset distribution uses the first 40% of the data as a training set,
the next 10% of the data for the naive model, and the next 10% as
the test set. The third dataset distribution uses the first 60% of the
data as a training set, the next 10% of the data for the naive model,
and the next 10% as the test set, and the fourth dataset distribution
uses the first 80% of the data as a training set, the next 10% of the
data for the naive model, and the final 10% as the test set

4 RESULTS AND EVALUATION
We present here the final performance of our models, trained across
multiple timescales. In order to obtain upper and lower bounds for
each prediction as well as a point estimate, we train three separate
models for each timescale, using quantile regression: one to predict
the upper bound, one to predict the lower bound, and one to predict
the median. We evaluate these models using both standard metrics
as well as the custom metrics (overestimation, failed activation rate
and missed activation rate) previously defined in Section 3.4.

4.1 Predictions Across Different Time Horizons
Our models predict average energy generation over 3 minutes,
5 minutes, 15 minutes, 30 minutes, and 60 minutes. In general,
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Figure 3: Estimates and prediction interval plots for various time horizons. Lower and upper bound lines refer to the 5th and
95th percentile predictions, respectively. Plots for 3 minute time horizon omitted, but performance results are available in
Table 1. These figures present a subset of the data in order to provide a more detailed view of model predictions. Dataset and
code used for plotting will be open-source and available on Github and Google Colab.

models trained at lower timescales result in less wasted energy.
Furthermore, the lower-bound models for each timescale allow
for the most efficient use of energy compared to the other models
of that timescale. For example, when scheduling device activation
using our best performing models—the lower-bound 3 and 5 minute
models trained on the dataset as described in section 3.1—we only
activate the device 0.27% fewer times than if we had made perfect
use of available energy. The lower-bound 60 minute model, in
contrast, misses 0.90% of potential activations.

It is worth noting that in practice, using a model which makes
predictions across smaller timescales would require frequent use of
our prediction and scheduling framework, resulting in increased
energy expenditure. Even checking the amount of energy currently
present in the MFC cell, a neccesary function for this framework,

requires energy expenditure. Therefore, a scheduling framework
that operates every 3 minutes would have 20 times the operating
costs as a model that operates every 60 minutes. Given the low
energy generation of SMFCs, increasing energy efficiency from
99.10% to 99.73% may not be worth this increased energy cost. It
may even be worthwhile to explore the performance of models
which make predictions at timescales greater than 60 minutes. Fu-
ture work will attempt to quantify the costs and benefits across
different prediction timescales in more detail, as well as exploring
the performance of models which make predictions across longer
timescales.
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Table 1: Model Performances. L, U are upper (95th %ile) and lower bound (5th %ile) estimates for the models; M signifies the
median. Total energy error is % difference between ground truth and predicted values of the total energy generated. The "Failed
Activations" metric measures how often our model schedules a device activation when there is not enough energy. The "Missed
Activations" metric measures how many additional times the device could have successfully been activated if operating with
perfect knowledge. More information on bound estimates and metrics can be found in Secs. 3.3.1, 3.4.2, 3.4.3, and 3.4.4.

Possible Activations 6023
Times (Minutes) 3 5 15 30 60

Batch Size 300 150 50 20 8
Bound Estimate

(Lower, Middle, Upper) L M U L M U L M U L M U L M U
Predicted Activations 6011 6014 6101 6007 6014 6115 6007 6043 6488 6003 6123 7091 6008 6193 7753

Failed
Activations (%) 0.067% 2.345% 18.866% 0% 3.242% 18.872% 0.366% 7.744% 53.067% 0% 17.050% 97.038% 0.566% 21.411% 99.020%

Missed
Activations (%) 0.266% 2.490% 17.815% 0.266% 3.894% 17.632% 0.631% 7.438% 49.444% 0.332% 15.673% 96.513% 0.897% 19.343% 98.954%

Total Energy Error -40.674% 8.490% 24.100% -33.987% 2.288% 42.172% -14.651% 16.049% 27.331% -18.220% 9.851% 28.682% -21.772% 5.543% 35.316%
Test MAPE Power 38.976% 18.748% 26.801% 34.309% 12.486% 47.368% 16.760% 17.121% 27.602% 20.605% 9.678% 26.165% 23.360% 10.964% 32.182%
Test MAPE Voltage 7.291% 2.326% 9.329% 6.422% 3.034% 9.584% 4.771% 3.636% 12.277% 14.407% 4.984% 14.305% 18.970% 5.709% 17.578%
Test MAPE Current 37.827% 16.210% 28.484% 31.629% 8.906% 20.852% 18.364% 4.267% 15.748% 14.107% 3.069% 8.192% 14.092% 5.016% 12.437%

4.2 Evaluating Model Performance
Initial results for our prediction and scheduling algorithm for in-
termittent SMFC-powered device use are promising. Predictions
for a subset of our test set are graphed in Figure 3. We present and
discuss our initial results in this section, and Table 1 contains a
complete summary of the performance of each model.

Using the lower bound of the model which predicts average
energy generation an hour into the future, we schedule device acti-
vations for 549 hours, or about 23 days. Compared to a naive model
which schedules device activations based on the average voltage
generated in the past, this framework allows the device to success-
fully activate a median of 2.08 more times—this is more than a 100%
increase in successful operations. Furthermore, when compared
to a theoretical model described in section 3.5 that can perfectly
predict and make use of available energy, this framework results in
only 4.23% fewer device activations, if we use the worst-performing
lower bound model trained with time-series cross validation. In
comparison, when we exclude the models trained on only the first
20% of the data, the worst-performing lower boundmodel schedules
only 1.13% less activations than the theoretical maximum

The performance of the scheduling framework generally—but
not always—becomes even stronger the lower the timescale of
prediction. However, as discussed in Section 4.1, shorter prediction
timescales require increased energy expenditure, and it may not be
worth increasing energy cost for improvements in an already high
operating efficiency. The tradeoffs between energy consumption
and operating efficiency will be further explored in future work.

Another topic for future work will be scheduling different types
of device operations, with different functions, energy costs, and
consequences for failure. For example, a simple read/record op-
eration could potentially be more aggressively scheduled than a
wireless transmission operation, because if the less energy intensive
read/record operation fails, the amount of wasted energy is less if
the wireless transmission operation had failed.

4.3 Time-Series Cross Validation
In order to test how well our models generalize to different distri-
butions of data, we perform time series cross validation to train and

evaluate four different models for each timescale. The distribution
of each training, validation, and test set is described in section 3.7.
On the whole, the models trained on these data distributions per-
form fairly strongly. Even the worst performing of the lower-bound
estimate models, which was trained on 20% of the data and made
its predictions at intervals of 60 minutes, was able to successfully
schedule only 4.23% fewer device activation than the oracle model
defined in section 3.5.

5 DISCUSSION
5.1 Importance of SMFC Energy Prediction
The goal of a predictive model for SMFCs is to allow a system to plan
future activities to maximize utilization of the harvested energy.
This means wasting as little energy as possible while performing
the maximum possible number of useful operations. SMFCs do not
produce a great deal of energy, so it is vital that the energy they
produce is used effectively. Therefore, it is extremely important for
an SMFC powered device to activate only when there is sufficient
energy available. If our model over-predicts the energy available
at a given time, attempting to activate a device when there is not
sufficient energy available, this wastes our carefully stored energy.

To address this need, our model goes beyond the single-point
estimations most often used in deep learning, and instead generates
a range of feasible predictions for energy production. By consider-
ing the confidence intervals on these predictions, we can minimize
the possibility of wasting energy by activating a device only when
there is a high probability of success.

5.2 Notes on Performance
When using the predictions of the lower bound model, our schedul-
ing framework rarely over-predicts how much energy will be avail-
able, resulting in a low rate of failed activations for each timescale,
as shown in Table 1. It is notable, however, that the lower bound
model at the 30 minute timescale has 0 failed activations, despite
this metric generally trending upward as prediction timescales in-
crease. The most likely cause of this is that our models predict
three values simultaneously - voltage, current, and power - and so
they optimize to predict the desired quantile, on average, across
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these three values. Because of this, for some models, certain predic-
tions will be lower than the desired quantile. It is not completely
unexpected for our framework to predict energy generation more
conservatively for some models than others, resulting in device
activations being scheduled only when there is enough available
energy, resulting in no failed activations.

It is also noteworthy that our models are able to predict voltage
more accurately than current, particularly at lower timescales. This
is likely due to the fact that current typically changes far more
from moment to moment than voltage does in our dataset, though
it tends to be more stable when averaged across larger timescales.
This would also explainwhy current predictions are far less accurate
at smaller timescales than larger ones. Furthermore, since power
is the product of voltage and current, it makes sense that power is
also predicted less accurately than voltage.

Finally, it is worth noting in the graph of the 1-hour time hori-
zon models in Figure 3, the ground truth voltage and power are
greater than the upper bound estimate for the much of the graph.
In order to make our graphs more legible, we chose a small subset
of the test set to include in the graphs, which happens to include a
disproportionate amount of data where the upper bound estimate
is lower than the ground truth data for this particular model. How-
ever, the upper bound estimate performs much better for the rest
of the dataset.

5.3 Limitations of Current Model
It is currently extremely difficult to collect reliable, timestamped
data on both the power generation of a soil microbial fuel cell
and the immediate soil conditions (temperature, volumetric water
content, and electrical conductivity). Because of this difficulty, our
model is both trained and validated on data gathered from a single
microbial fuel cell. As such, it is currently unknown how well
this model generalizes to microbial fuel cells deployed in different
conditions than the SMFC used for training. Madden et al. [14]
have recently developed specialized logging hardware to gather
real-time, accurate data for deployed SMFCs, and this work provides
a promising path for making collection of this data easier and more
affordable.

5.4 Future Work
The operation of the model itself consumes valuable harvested en-
ergy. Therefore future work will need to consider the tradeoffs of
predicting energy availability and scheduling tasks across various
timeframes, as well as accounting for the different types of device
operations that would be performed by an SMFC-powered system.
The framework scheduling presented by [10] successfully accounts
for a range of tasks for intermittently powered (but not SMFC-
powered) systems, outperforming state-of-the-art task schedulers,
and we will need to determine to what extent this approach can be
adapted to SMFC-powered devices. We will also gather additional
SMFC data from cells deployed across a variety of climates, soil
types, etc. The broadened dataset will be used in both the training
and validation of future models, and will help ensure more gen-
eralizability. Finally, we plan to continue engaging with farmers
and other relevant stakeholders in order to better understand how

they would like to use intermittently-powered computing devices
in their work.

6 CONCLUSION
The prediction and scheduling framework presented in this paper
opens the door to a range of future applications for low-power
devices fueled by SMFCs. For example, low-power sensors have ap-
plications in agriculture, allowing farmers an affordable method to
monitor their fields and receive accurate, real-time data on soil con-
ditions [12]. Other applications include long-lasting environmental
sensors networks designed to detect and prevent environmental
disasters, like monitoring conditions across a wide area to help
prevent wildfires. In closing, we believe that the work presented
here is a valuable step toward increasing the utility of SMFCs, and
realizing the goal of an affordable, long-lasting, renewable source
of energy.
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